Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (17): 3333-3353.doi: 10.3864/j.issn.0578-1752.2015.17.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genomics-Based Crop Germplasm Research: Advances and Perspectives

LI Yu, LI Ying-hui, YANG Qing-wen, ZHANG Jin-peng, ZHANG Jin-mei, QIU Li-juan, WANG Tian-yu   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2014-12-16 Online:2015-09-01 Published:2015-09-01

Abstract: The scale of activities related to crop germplasm is massive, including basic work (germplasm collecting, documentation, multiplication, conservation, regeneration, distribution and information system establishment, etc.), basic research (studies on crop origin, domestication and dispersal, germplasm classification, ethnobotany, indigenous knowledge, etc.), and applied basic research (genetic diversity assessment, precise phenotypic evaluation of important traits, germplasm genotyping, gene discovery and allele mining, germplasm enhancement etc.). With the efforts in the last century, the basic work on crop germplasm has been very fruitful and the system of crop germplasm conservation and utilization has been established in the world. Because the traditional ideas and methodologies based on morphology had their innate disadvantages, however, the basic research and the applied basic research had developed along at an agonizingly slow pace before genomics appeared. With rapid development of molecular marker technology and next-generation sequencing technology, theories and techniques of genomics have extended to multi-faceted germplasm research, resulting in revolutionary changes of conception and methodology in germplasm conservation, in-depth research and utilization. The achievements made in genomics provide not only theoretical guidance to collecting and conservation of crop germplasm, but also core theories and techniques to clarify crop origin and evolution. Meanwhile, genomics has the power to promote the efficiency of gene discovery and germplasm enhancement. Especially, the rapid development of whole genome sequencing, genome re-sequencing and simplified genome sequencing enable comparisons of genomic variation in different germplasms at the whole-genomic level. Further, crop origin can be illustrated and effects of domestication, improvement and dispersal on germplasm can be clarified. Population structure and genetic diversity of crop germplasm preserved in genebanks and existing in the wild can be evaluated in depth, generating huge amounts of information useful in designing optimum strategies of ex situ preservation and in situ conservation of crop genetic resources. Through integrating phenotypic data, new genes and their favorable alleles can be mined by using various approaches such as linkage mapping and association analysis. In addition, germplasm enhancement can also be benefited from the advances in genomics through the use of alleles discovered and other molecular marker-based techniques such as marker-assisted selection and genomic selection. This paper reviews the advances of genomics-based crop germplasm research, especially the applications of genomics in germplasm genotyping, ex situ and in situ conservation, crop origin and evolution research, structural diversity assessment, gene discovery and allele mining, and germplasm enhancement etc. Finally, future development directions and priorities in the field are proposed, which emphasize the close combination of genomics and crop germplasm research to provide a strong support to effective conservation and efficient utilization of crop germplasm in terms of theories, techniques, materials and information.

Key words: germplasm, genomics, review

[1]    Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 2014, 33: 1-14.
[2]    Hamblin M T, Warburton M L, Buckler E S. Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS ONE, 2007, 2: e1367.
[3]    Van Inghelandt D, Melchinger A, Lebreton C, Stich B. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theoretical and Applied Genetics, 2010, 120: 1289-1299.
[4]    Chen H, Xie W, He H, Yu H, Chen W, Li J, Yu R, Yao Y, Zhang W, He Y, Tang X, Zhou F, Deng X W, Zhang Q. A high-density SNP genotyping array for rice biology and molecular breeding. Molecular Plant, 2014, 7: 541-553.
[5]    Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnology Journal, 2014, 12: 787-796.
[6]    Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, Le Paslier M C, McMullen M D, Montalent P, Rose M, Schon C C, Sun Q, Walter H, Martin O C, Falque M. A large maize (Zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE, 2011, 6: e28334.
[7]    Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, Meitinger T, Strom T M, Fries R, Pausch H, Bertani C, Davassi A, Mayer K F X, Schon C C. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 K SNP genotyping array. BMC Genomics, 2014, 15: 823.
[8]    Lam H M, Xu X, Liu X, Chen W B, Yang G H, Wong F L, Li M W, He W M, Qin N, Wang B, Li J, Jian M, Wang J, Shao G H, Wang J, Sun S S M, Zhang G Y. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 2010, 42: 1053-1059.
[9]    Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Städler T, Renner S S, Kamoun S, Lucas W J, Zhang Z, Huang S. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 2013, 45: 1510-1518.
[10]   Gore M A, Wright M H, Ersoz E S, Bouffard P, Szekeres E S, Jarvie T P, Hurwitz B L, Narechania A, Harkins T T, Grills G S, Ware D H, Buckler E S. Large-scale discovery of gene-enriched SNPs. Plant Genome, 2009, 2: 121-133.
[11]   Van Orsouw N J, Hogers R C J, Janssen A, Yalcin F, Snoeijers S, Verstege E. Complexity reduction of polymorphic sequences (CRoPS): A novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE, 2007, 2: e1172.
[12]   Elshire R J, Glaubitz J C, Sun Q, Poland J A, Kawamoto K, Buckler E S, Mitchell S E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 2011, 6: e19379.
[13]   Poland J A, Rife T W. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome, 2012, 5: 92-102.
[14]   Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B. An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PloS ONE, 2013, 8: e54603.
[15]   Truong H T, Ramos A M, Yalcin F, de Ruiter M, van der Poel H J A, Huvenaars K H J, Hogers R C J, van Enkevort L J G, Janssen A, van Orsouw N J, van Eijk M J T. Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS ONE, 2012, 7: e37565.
[16]   Miller M R, Dunham J P, Amores A, Cresko W A, Johnson E A. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research, 2007, 17: 240-248.
[17]   Monson-Miller J, Sanchez-Mendez D, Fass J, Henry I, Tai T H, Comai L. Reference genome-independent assessment of mutation density using restriction enzyme-phased sequencing. BMC Genomics, 2012, 13: 72.
[18]   Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M, Ahmadi N, McCouch S. Bridging the genotyping gap: Using genotyping by sequencing (GBS) to add high?density SNP markers and new value to traditional bi?parental mapping and breeding populations. Theoretical and Applied Genetics, 2013, 126: 2699-2716.
[19]   Glaubitz J C, Casstevens T M, Lu F, Harriman J, Elshire R J, Sun Q, Buckler E S. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE, 2014, 9: e90346.
[20]   Poland J A, Brown P J, Sorrells M E, Jannink J L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE, 2012, 7: e32253.
[21]   Russell J, Hackett C, Hedley P, Liu H, Milne L, Bayer M, Marshall D, Jorgensen L, Gordon S, Brennan R. The use of genotyping by sequencing in blackcurrant (Ribes nigrum): Developing high- resolution linkage maps in species without reference genome sequences. Molecular Breeding, 2014, 33: 835-849.
[22]   Ng S B, Turner E H, Robertson P D, Flygare S D, Bigham A W, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler E E, Bamshad M, Nickerson D A, Shendure J. Targeted capture and massively parallel sequencing of 12 human exomes. Nature, 2009, 461: 272-276.
[23]   Brunner A L, Johnson D S, Kim S W, Valouev A, Reddy T E, Neff N F, Anton E, Medina C, Nguyen L, Chiao E, Oyolu C, Schroth G P, Absher D M, Baker J C, Myers R M. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Research, 2009, 19: 1044-1056.
[24]   Barbazuk W B, Schnable P S. SNP discovery by transcriptome pyrosequencing. Methods in Molecular Biology, 2011, 729: 225-246.
[25]   Fu J, Cheng Y, Linghu J, Yang X, Kang L, Zhang Z, Zhang J, He C, Du X, Peng Z, Wang B, Zhai L, Dai C, Xu J, Wang W, Li X, Zheng J, Chen L, Luo L, Liu J, Qian X, Yan J, Wang J, Wang G. RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 2013, 4: 2832, DOI:10.1038.
[26]   Kiialainen A, Karlberg O, Ahlford A, Sigurdsson S, Lindblad-Toh K, Syvänen A C. Performance of microarray and liquid based capture methods for target enrichment for massively parallel sequencing and SNP discovery. PLoS ONE, 2011, 6: e16486.
[27]   Pham A T, Bilyeu K, Chen P, Boerma H R, Li Z. Characterization of the fan1 locus in soybean line A5 and development of molecular assays for high-throughput genotyping of FAD3 genes. Molecular Breeding, 2014, 33: 895-907.
[28]   De La Fuente G N, Murray S C, Isakeit T, Park Y S, Yan Y, Warburton M L, Kolomiets M V. Characterization of genetic diversity and linkage disequilibrium of ZmLOX4 and ZmLOX5 loci in maize. PLoS ONE, 2013, 8: e53973.
[29]   FAO. The Second Report on The State of The World’s Plant Genetic Resources for Food and Agriculture. 2010. FAO, Rome, Italy.
[30]   Thomson M J, Zhao K, Wright M, McNally K L, Rey J, Tung C W, Scheffler A R B, Eizenga g, McClung A, Kim H, Ismail A M, de Ocampo M, Mojica C, Reveche M Y, Dilla-Ermita C J, Mauleon R, Leung H, Bustamante C, McCouch S R. High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Molecular Breeding, 2012, 29: 875-886.
[31]   Xue Y, Zhang S Q, Yao Q H, Peng R H, Xiong A S, Li X, Zhu W M, Zhu Y Y, Zha D S. Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.). Euphytica, 2008, 164: 739-744.
[32]   Nagel M, Rosenhauer M, Willner E, Snowdon R J, Friedt W, Boerner A. Seed longevity in oilseed rape (Brassica napus L.) - genetic variation and QTL mapping. Plant Genetic Resources: Characterization and Utilization, 2011, 9: 260-263.
[33]   Nagel M, Vogel H, Landjeva S, Buck-Sorlin G, Lohwasser U, Scholz U, Boerner A. Seed conservation in ex situ genebanks - genetic studies on longevity in barley. Euphytica, 2009, 170: 5-14.
[34]   Arif M A R, Nagel M, Neumann K, Kobiljski B, Lohwasser U, Borner A. Genetic studies of seed longevity in hexaploid wheat using segregation and association mapping approaches. Euphytica, 2012, 186: 1-13
[35]   Harding K, Benson E E. The use of microsatellite analysis in Solanum tuberosum L. in vitro plantlets derived from cryopreserved germplasm. Cryoletters, 2001, 22: 199-208.
[36]   Kaity A, Ashmore S E, Drew R A, Dulloo M E. Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Reports, 2008, 27: 1529-1539.
[37]   Peredo E L, Arroyo-Garcia R, Reed B M, Revilla M A. Genetic and epigenetic stability of cryopreserved and cold-stored hops (Humulus lupulus L.). Cryobiology, 2008, 57: 234-241.
[38]   Johnston J W, Benson E E, Harding K. Cryopreservation induces temporal DNA methylation epigenetic changes and differential transcriptional activity in Ribes germplasm. Plant Physiology and Biochemistry, 2009, 47: 123-131.
[39]   Volk G M. Application of functional genomics and proteomics to plant cryopreservation. Current Genomics, 2010, 11: 24-29.
[40]   刘敏, 辛霞, 张志娥, 陈晓玲, 张金梅, 卢新雄. 繁殖群体量及隔离对蚕豆种质遗传完整性的影响. 植物遗传资源学报, 2012, 13: 175-181.
Liu M, Xin X, Zhang Z E, Chen X L, Zhang J M, Lu X X. Effect of sample size and isolation methods on genetic integrity of faba bean (Vicia faba L.) germplasm. Journal of Plant Genetic Resources, 2012, 13: 175-181. (in Chinese)
[41]   王栋, 张志娥, 陈晓玲, 辛霞, 辛萍萍, 卢新雄. AFLP标记分析生活力影响大豆中黄18种质遗传完整性. 作物学报, 2010, 36(4): 555-564.
Wang D, Zhang Z E, Chen X L, Xin X, Xin P P, Lu X X. Analysis of viability affecting on genetic integrity in soybean germplasm Zhonghuang 18 by AFLP markers. Acta Agronomica Sinica, 2010, 36(4): 555-564. (in Chinese)
[42]   Bai J M, Chen X L, Lu X X, Xin X, Zhang Z E, Liu X C, Sun B S, Zhang J M, Yin G K, Sui Q J. Effects of different conservation methods on the genetic stability of potato germplasm. Russian Journal of Plant Physiology, 2011, 58: 728-736.
[43]   Ren L, Zhang D, Jiang X N, Gai Y, Wang W M, Reed B M, Shen X H. Peroxidation due to cryoprotectant treatment is a vital factor for cell survival in Arabidopsis cryopreservation. Plant Science, 2013, 212: 37-47.
[44]   Frankham R. Conservation genetics. Annual Review of Genetics, 1995, 29: 305-327.
[45]   杨庆文, 余丽琴, 张万霞, 时津霞, 任军方, 苗晗. 东乡普通野生稻(Oryza rufipogon Griff.)原位保存群体的遗传分化和保护策略研究. 中国农业科学 2007, 40(6): 1085-1093.
Yang Q W, Yu L Q, Zhang W X, Shi J X, Ren J F, Miao H. Genetic differentiation and conservation strategy of in situ conserved populations of Dongxiang wild rice (Oryza rufipogon Griff.). Scientia Agricultura Sinica, 2007, 40(6): 1085-1093. (in Chinese)
[46]   王家祥, 陈友桃, 黄娟, 乔卫华, 张万霞, 杨庆文. 中国普通野生稻原生境保护与未保护居群的遗传多样性比较. 作物学报2009, 35(8): 1474-1482.,
Wang J X, Chen Y T, Huang J, Qiao W H, Zhang W X, Yang Q W. Comparison of genetic diversity between in-situ conserved and non- conserved Oryza rufipogon populations in China. Acta Agronomica Sinica, 2009, 35(8): 1474-1482. (in Chinese)
[47]   Qiao W H, Chen Y T, Wang R S, Wei X, Cao L R, Zhang W X, Yang Q W. Nucleotide diversity in waxy gene and validation of single nucleotide polymorphism in relation to amylose content in Chinese microcore rice germplasm. Crop Science, 2012, 52: 1689-1697.
[48]   Wei X, Qiao W H, Chen Y T, Wang R S, Cao L R, Zhang W X, Yuan N N, Li Z C, Zeng H L, Yang Q W. Domestication and geographic origin of Oryza sativa in China: Insights from multilocus analysis of nucleotide variation of O. sativa and O. rufipogon. Molecular Ecology, 2012, 21: 5073-5087.
[49]   Wei X, Wang R S, Cao L R, Yuan N N, Huang J, Qiao W H, Zhang W X, Zeng H L, Yang Q W. Origin of Oryza sativa in China inferred by nucleotide polymorphisms of organelle DNA. PloS ONE, 2012, 7: e49546.
[50]   Henry R J. Sequencing of wild crop relatives to support the conservation and utilization of plant genetic resources. Plant Genetic Resources: Characterization and Utilization, 2014, 12: S9-S11.
[51]   Doebley J, Stec A, Gustus C. teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics, 1995, 141: 333-346.
[52]   Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 2011, 43: 1160-1163.
[53]   Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F. Control of tillering in rice. Nature, 2003, 422: 618-621.
[54]   Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science, 2006, 311: 1936-1939.
[55]   Konishi S, Izawa T, Lin S Y, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication. Science, 2006, 312: 1392-1396.
[56]   Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D. Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetics, 2008, 40: 1360-1364.
[57]   Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008, 40: 1023-1028.
[58]   Cao K, Zheng Z, Wang L, Liu X, Zhu G, Fang W, Cheng S, Zeng P, Chen C, Wang X. Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops. Genome Biology, 2014, 15: 415.
[59]   Mace E S, Tai S, Gilding E K, Li Y, Prentis P J, Bian L, Campbell B C, Hu W, Innes D J, Han X. Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum. Nature Communications, 2013, 4: 2320.
[60]   Schmutz J, McClean E, Mamidi S, Wu G A, Cannon S B, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torrres-Torres M, Geffroy V, Moghaddam S M, Gao D, Abernathy B, Barry K, Blair M, Brick M, Chovatia M, Gepts P, Goodstein D M, Gonzales M, Hellsten U, Hyten D L, Jia G, Kelly J D, Kudrna D, Lee R, Richard M M S, Miklas P N, Osorno J M, Rodrigues J, Thareau V, Urrea C A, Wang M, Yu Y, Zhang M, Wing R A, Cregan P B, Rokhsar D S, Jackson S A. A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 2014, 46: 707-713.
[61]   Huang X, Kurata N, Wei X, Wang Z X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W. A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012, 490: 497-501.
[62]   Wang M, Yu Y, Haberer G, Marri P R, Fan C, Goicoechea J L, Zuccolo A, Song X, Kudrna D, Ammiraju J S S. The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nature Genetics, 2014, 46: 982-988.
[63]   Xu X, Liu X, Ge S, Jensen J D, Hu F, Li X, Dong Y, Gutenkunst R N, Fang L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 2012, 30: 105-111.
[64]   Hufford M B, Xu X, Van Heerwaarden J, Pyhäjärvi T, Chia J M, Cartwright R A, Elshir R J, Glaubitz J C, Guill K E, Kaeppler S M, Lai J, Morrell P L, Shannon L M, Song C, Springer N M, Swanson-Wagner R A, Tiffin P, Wang J, Zhang G, Doebley J, McMullen M D, Ware D, Buckler E, Yang S, Ross-Ibarra J. Comparative population genomics of maize domestication and improvement. Nature Genetics, 2012, 44: 808-811.
[65]   Li Y H, Zhao S C, Ma J X, Li D, Yan L, Li J, Qi X T, Guo X S, Zhang L, He W M, Chang R Z, Liang Q S, Guo Y, Ye C, Wang X B, Tao Y, Guan R X, Wang J Y, Liu Y L, Jin L G, Zhang X Q, Liu Z X, Zhang L J, Chen J, Wang K J, Nielsen R, Li R Q, Chen P Y, Li W B, Reif J C, Purugganan M, Wang J, Zhang M C, Wang J, Qiu L J. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics, 2013, 14: 579.
[66]   Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni J J, Chetelat R T, Zamir D, Stadler T, Li J, Ye Z, Du Y, Huang S. Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 2014, 46: 1220-1226.
[67]   Guo S, Zhang J, Sun H, Salse J, Lucas W J, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics, 2013, 45: 51-58.
[68]   Tanksley S D, McCouch S R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 1997, 277: 1063-1066.
[69]   Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proceedings of the National Academy of Sciences of the USA, 2014, 111: 5135-5140.
[70]   Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88.
[71]   Cook D E, Lee T G, Guo X, Melito S, Wang K, Bayless A, Wang J, Hughes T J, Willis D K, Clemente T. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science, 2012, 338: 1206-1209.
[72]   Li Y H, Zhou G, Ma J, Jiang W, Jin L G, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang S S, Zuo Q, Shi XH, Li Y F, Zhang W K, Hu Y, Kong G, Hong H L, Tan B, Song J, Liu Z X, Wang Y, Ruan H, Yeung CK, Liu J, Wang H, Zhang L J, Guan R X, Wang K J, Li W B, Chen S Y, Chang R Z, Jiang Z, Jackson S A, Li R, Qiu L J. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 2014: 32: 1045-1052 .
[73]   Mir C, Zerjal T, Combes V, Dumas F, Madur D, Bedoya C, Dreisigacker S, Franco J, Grudloyma P, Hao P X. Out of America: Tracing the genetic footprints of the global diffusion of maize. Theoretical and Applied Genetics, 2013, 126: 2671-2682.
[74]   Wang N, Li F, Chen B, Xu K, Yan G, Qiao J, Li J, Gao G, Bancroft I, Meng J, King G J, Wu X. Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theoretical and Applied Genetics, 2014, 127: 1817-1829.
[75] Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W, Zhang M, Xie S, Lai J. Genome-wide genetic changes during modern breeding of maize. Nature Genetics, 2012, 44: 812-815.
[76]   Dang X, Thi T G T, Dong G, Wang H, Edzesi W M, Hong D. Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta, 2014, 239: 1309-1319.
[77]   The 100 Tomato Genome Sequencing Consortium, Aflitos S, Schijlen E, de Jong H, de Ridder D, Smit S, Finkers R, Wang J, Zhang G, Li N, Mao L, Bakker F, Dirks R, Breit T, Gravendeel B, Huits H, Struss D, Swanson-Wagner R, van Leeuwen H, van Ham R C H J, Fito L, Guignier L, Sevilla M, Ellul P, Ganko E, Kapur A, Reclus E, de Geus B, van de Geest H, te Lintel Hekkert B, van Haarst J, Smits L, Koops A, Sanchez-Perez G, van Heusden A W, Visser R, Quan Z, Min J, Liao L, Wang X, Wang G, Yue Z, Yang X, Xu N, Schranz E, Smets E, Vos R, Rauwerda J, Ursem R, Schuit C, Kerns M, van den Berg J, Vriezen W, Janssen A, Datema E, Jahrman T, Moquet F, Bonnet J, Peters S. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. The Plant Journal, 2014, 80: 136-148.
[78]   Wang L, Han X, Zhang Y, Li D, Wei X, Ding X, Zhang X. Deep resequencing reveals allelic variation in Sesamum indicum. BMC Plant Biology, 2014, 14: 225.
[79]   The International Peach Genome Initiative. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45: 487-494.
[80]   Varshney R K, Song C, Saxena R K, Azam S, Yu S, Sharpe A G, Cannon S, Baek J, Rosen B D, Tar’an B, Millan T, Zhang X, Ramsay L, Iwata A, Wang Y, Nelson W, Farmer A D, Gaur P M, Soderlund C, Penmetsa R V, Xu C, Bharti A K, He W, Winter P, Zhao S, Hane J K, Carrasquilla-Garcia N, Condie J A, Upadhyaya H D, Luo M C, Thudi M, Gowda C L L, Singh N P, Lichtenzveig J, Gali K K, Rubio J, Nadarajan N, Dolezel J, Bansal K C, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh K B, Datta S K, Jackson S A, Wang J, Cook D R. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 2013, 31: 240-246.
[81]   Zeng X, Long H, Wang Z, Zhao S, Tang Y, Huang Z, Wang Y, Xu Q, Mao L, Deng G, Yao X, Li X, Bai L, Yuan H, Pan Z, Liu R, Chen X, WangMu Q, Chen M, Yu L, Liang J, DunZhu D, Zheng Y, Yu S, LuoBu Z, Guang X, Li J, Deng C, Hu W, Chen C, TaBa X, Gao L, Lv X, Abuf Y B, Fang X, Nevo E, Yu M, Wang J, Tashia N. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proceedings of the National Academy of Sciences of the USA, 2015, 112: 1095-1100.
[82]   Chia J M, Song C, Bradbury P J, Costich D, de Leon N, Doebley J, Elshire R J, Gaut B, Geller L, Glaubitz J C, Gore M, Guill K E, Holland J, Hufford M B, Lai J, Li M, Liu X, Lu Y, McCombie R, Nelson R, Poland J, Prasanna B M, Pyhajarvi T, Rong T, Sekhon R S, Sun Q, Tenaillon M I, Tian F, Wang J, Xu X, Zhang Z, Kaeppler S M, Ross-Ibarra J, McMullen M D, Buckler E S, Zhang G, Xu Y, Ware D. Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics, 2012, 44: 803-807.
[83]   Odong T L, van Heerwaarden J, van Hintum T J L, van Eeuwijk F A, Jansen J. Improving hierarchical clustering of genotypic data via principal component analysis. Crop Science, 2013, 53: 1546-1554.
[84]   Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
[85]   Raj A, Stephens M, Pritchard J K. fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 2014, 197: 573-589.
[86]   Frascaroli E, Schrag T A, Melchinger A E. Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theoretical and Applied Genetics, 2013, 126: 133-141.
[87]   Munoz-Amatriain M, Cuesta-Marcos A, Endelman J B, Comadran J, Bonman J M, Bockelman H E, Chao S, Russell J, Waugh R, Patrick M H, Muehlbauer G J. The USDA barley core collection: Genetic diversity, population structure, and potential for genome-wide association studies. PLoS ONE, 2014, 9(4): e94688.
[88]   Comadran J, Ramsay L, MacKenzie K, Hayes P, Close T J, Muehlbauer G, Stein N, Waugh R. Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theoretical and Applied Genetics, 2011, 122: 523-531.
[89]   Hamblin M T, Close T J, Bhat P R, Chao S, Kling J G, Abraham K J, Blake T, Brooks W S, Cooper B, Griff ey C A, Hayes P M, Hole D J, Horsley R D, Obert D E, Smith K P, Ullrich S E, Muehlbauer G J, Jannink J L. Population structure and linkage disequilibrium in U.S. barley germplasm: Implications for association mapping. Crop Science, 2010, 50: 556-566.
[90]   Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva M L, Bockelman H, Talbert L, Anderson J A, Dreisigacker S, Baenziger S, Carteri A, Korzun V, Morrell P L, Dubcovsky J, Morell M K, Mark E. Sorrells M E, Matthew J. Hayden M J, Akhunov E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the USA, 2013, 110: 8057-8062.
[91]   Wurschum T, Langer, S M, Longin C F H, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif J C. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theoretical and Applied Genetics, 2013, 126: 1477-1486.
[92]   Yan J, Shah T, Warburton M L, Buckler E S, McMullen M D, Crouch J. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE, 2009, 4: e8451.
[93]   Lu Y, Shah T, Hao Z, Taba S, Zhang S, Gao S, Liu J, Cao M, Wang J, Prakash A B, Rong T, Xu Y. Comparative SNP and haplotype analysis reveals a higher genetic diversity and rapider LD decay in tropical than temperate germplasm in maize. PLoS ONE, 2011, 6: e24861.
[94]   Wu X, Li Y, Shi Y, Song Y, Wang T, Huang Y, Li Y. Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theoretical and Applied Genetics, 2014, 127: 621-631.
[95]   Schaefer C M, Bernardo R. Population structure and single nucleotide polymorphism diversity of historical Minnesota maize inbreds. Crop Science, 2013, 53: 1529-1536.
[96]   Romay M C, Millard M J, Glaubitz J C, Jason A, Peiffer J A, Swarts K L, Casstevens T M, Elshire R J, Acharya C B, Mitchell S E, Flint-Garcia S A, McMullen M D, Holland J B, Edward S, Buckler E S, Gardner C A. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biology, 2013, 14: R55.
[97]   Sim S C, Van Deynze A, Stoffel K, Douches D S, Zarka D, Ganal M W, Chetelat R T, Hutton S F, Scott J W, Gardner R G, Panthee D R, Mutschler M, Myers J R, Francis D M. High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS ONE, 2012, 7: e45520.
[98]   Wang Y H, Upadhyaya H D, Burrell A M, Sahraeian S M E, Klein R R, Klein P E. Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor. G3: Genes, Genomes, Genetics, 2013, 3: 783-793.
[99]   肖永贵, 路亚明, 闻伟锷, 陈新民, 夏先春, 王德森, 李思敏, 童依平, 何中虎. 小麦骨干亲本京411及衍生品种苗期根部性状的遗传. 中国农业科学, 2014, 47(15): 2916-292.
Xiao Y G, Lu Y M, Wen W E, Chen X M, Xia X C, Wang D S, Li S M, Tong Y P, He Z H. Genetic contribution of seedling root traits among elite wheat parent Jing 411 to its derivatives. Scientia Agricultura Sinica, 2014, 47(15): 2916-2926. (in Chinese)
[100] Chen W, Chen H, Zheng T, Yu R, Terzaghi W B, Li Z, Deng X W, Xu J, He Hang. Highly efficient genotyping of rice biparental populations by GoldenGate assays based on parental resequencing. Theoretical and Applied Genetics, 2014, 127: 297-307.
[101] Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B. Highthroughput genotyping by whole-genome resequencing. Genome Research, 2009, 19: 1068-1076.
[102] Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proceedings of the National Academy of Sciences of the USA, 2010, 107: 10578-10583.
[103] Liu H, Bayer M, Druka A, Russell J R, Hackett C A, Poland J, Ramsay L, Hedley P E, Waugh R. An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genomics, 2014, 15: 104.
[104] Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 2006, 38: 203-208.
[105] Zhang Z, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J, Arnett D K, Ordovas J M, Buckler E S. Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 2010, 42: 355-360.
[106] Korte A, Bjarni J Vilhjálmsson B J, Segura V, Platt A, Long Q, Nordborg M. A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nature Genetics, 2012, 44: 1066-1071.
[107] Segura V, Vilhjálmsson B J, Platt A, Korte A, Seren U, Long Q, Nordborg M. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nature Genetics, 2012, 44: 825-830.
[108] Wang Q, Tian F, Pan Y, Buckler E S, Zhang Z. A SUPER powerful method for genome wide association study. PLoS ONE, 2014, 9: e107684.
[109] Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J B. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics, 2014, 10: e1004573.
[110] Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W, Li Y, Liu X, Zhang H, Dong H, Zhang W, Zhang L, Yu S, Wang G, Lian X, Luo J. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Genetics, 2014, 46: 714-721.
[111] Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42: 961-967.
[112] Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2012, 44: 32-39.
[113] Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya F C. Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS ONE, 2014, 9: e105593.
[114] Liu S, Yang X, Zhang D, Bai G, Chao S, Bockus W. Genome-wide association analysis identified SNPs closely linked to a gene resistant to soil-borne wheat mosaic virus. Theoretical and Applied Genetics, 2014, 127: 1039-1047.
[115] Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S. Adaptation of maize to temperate climates: Mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus. PLoS ONE, 2013, 8: e71377.
[116] Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger A E. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proceedings of the National Academy of Sciences of the USA, 2012, 109: 8872-8877.
[117] Strigens A, Freitag N M, Gilbert X, Grieder C, Riedelsheimer C, Schrag T A, Messmer R, Melchinger A E. Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments. Plant Cell and Environment, 2013, 36: 1871-1887.
[118] Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H, Zhu C, Lu Y, Zhou C, Fan D, Weng Q, Guo Y, Huang T, Zhang L, Lu T, Feng Q, Hao H, Liu H, Lu P, Zhang N, Li Y, Guo E, Wang S, Wang S, Liu J, Zhang W, Chen G, Zhang B, Li W, Wang Y, Li H, Zhao B, Li J, Diao X, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013, 45: 957-961.
[119] Sauvage C, Segura V, Bauchet G, Stevens R, Do P T, Nikoloski Z, Fernie A R, Causse M. Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiology, 2014, 165: 1120-1132.
[120] Cockram J, White J, Zuluaga D L, Smith D, Comadran J, Macaulay M, Luo Z, Kearsey M J, Werner P, Harrap D, Tapsell C, Liu H, Hedley P E, Stein N, Schulte D, Steuernagel B, Marshall D F, Thomas W T, Ramsay L, Mackay I, Balding D J, AGOUEB Consortium, Waugh R, O'Sullivan D M. Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proceedings of the National Academy of Sciences of the USA, 2010, 107: 21611-21616.
[121] Wang M, Jiang N, Jia T, Leach L, Cockram J, Waugh R, Ramsay L, Bill Thomas B, Lu Z. Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theoretical and Applied Genetics, 2012, 124: 233-246.
[122] Zhou H, Steffenson B J, Muehlbauer G, Wanyera R, Njau P, Ndeda S. Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm. Theoretical and Applied Genetics, 2014, 127: 1293-1304.
[123] Thornsberry J M, Goodman M M, Doewbley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics, 2001, 28: 286-289.
[124] Larsson S J, Lipka A E, Buckler E S. Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genetics, 2013, 9: e1003246.
[125] Wilson L M, Whitt S R, Ibanez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene association. The Plant Cell, 2004, 16: 2719-2733.
[126] Setter T L, Yan J, Warburton M, Ribaut J M, Xu Y, Sawkins M, Buckler E S, Zhang Z, Gore M A. Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. Journal of Experimental Botany, 2011, 62: 701-716.
[127] Tardivel A, Sonah H, Belzile F, O’Donoughue L S. Rapid identification of alleles at the soybean maturity gene E3 using genotyping by sequencing and a haplotype-based approach. Plant Genome, 2014, 7: 1-9.
[128] Rodriguez G R, Munos S, Anderson C, Sim S C, Michel A, Causse M, Gardener B B M, Francis D, van der Knaap E. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiology, 2011, 156: 275-285.
[129] Bhullar N K, Street K, Mackay M, Yahiaouia N, Keller B. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proceedings of the National Academy of Sciences of the USA, 2009, 106: 9519-9524.
[130] Bhullar N K, Zhang Z, Wicker T, Keller B. Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: A large scale allele mining project. BMC Plant Biology, 2010, 10: 88.
[131] Myles S, Peiffer J, Brown P J, Ersoz E S, Zhang Z, Costich D E, Buckler E S. Association mapping: Critical considerations shift from genotyping to experimental design. The Plant Cell, 2009, 21: 2194-2202.
[132] Yu J, Holland J B, McMullen M D, Buckler E S. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008, 178: 539-551.
[133] McMullen M D, Kresovich S, Villeda H S, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell S E, Peterson B, Pressoir G, Romero S, Rosas M O, Salvo S, Yeates H, Hanson M, Jones E, Smith S, Glaubitz J, Goodman M, Ware D, Holland J B, Buckler E S. Genetic properties of the maize nested association mapping population. Science, 2009, 325: 737-740.
[134] Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M D, Holland J B, Buckler E S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 2011, 43: 159-162.
[135] Kump K L, Bradbury P J, Wisser R J, Buckler E S, Belcher A R, Oropeza-Rosas M A, Zwonitzer J C, Kresovich S, McMullen M D, Ware D, Balint-Kurti P J, Holland J B. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nature Genetics, 2011, 43: 163-168.
[136] Cook J P, McMullen M D, Holland J B, Tian F, Bradbury P, Ross-Ibarra J, Buckler E S, Flint-Garcia S A. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiology, 2012, 158: 824-834.
[137] Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut J M, Cao M, Rong T, Xu Y. Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proceedings of the National Academy of Sciences of the USA, 2010, 107: 19585-19590.
[138] Krill A M, Kirst M, Kochian L V, Buckler E S, Hoekenga O A. Association and linkage analysis of aluminum tolerance genes in maize. PLoS ONE, 2010, 5: e9958.
[139] Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton M L, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45: 43-50.
[140] Wen W, Li D, Li X, Gao Y, Li W, Li H, Liu J, Liu H, Chen W, Luo J, Yan J. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nature Communications, 2014, 5: 3438.
[141] Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, Chen H, Zeng J, Zhou Q, Wang S, Gu W, Liu M, Ren J, Gu X, Zhang S, Wang Y, Yasukawa K, Bouwmeester H J, Qi X, Zhang Z, Lucas W J, Huang S. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 2014, 346: 1084-1088.
[142]Able J A, Langridge P, Milligan A S. Capturing diversity in the cereals: Many options but little promiscuity. Trends in Plant Science, 2007, 12: 71-79.
[143]Xiao J, Grandillo S, Ahn S N, McCouch S R, Tanksley S D, Li J, Yuan L Y. Genes from wild rice improve yield. Nature, 1996, 384: 223-224.
[144]Tian F, Li D J, Fu Q, Zhu Z F, Fu Y C, Wang X K, Sun C Q. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theoretical and Applied Genetics, 2006, 112: 570-580.
[145]Zhang X, Zhou S, Fu Y, Su Z, Wang X, Sun C. Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Molecular Biology, 2006, 62: 247-259.
[146]Tan L, Liu F, Xue W, Wang G, Ye S, Zhu Z, Fu Y, Wang X, Sun C. Development of Oryza rufipogon and O. sativa introgression lines and assessment for yield-related quantitative trait loci. Journal of Integrative Plant Biology, 2007, 49: 871-884.
[147]Hou J, Jiang Q, Hao C, Wang Y, Zhang H, Zhang X. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiology, 2014, 164: 1918-1929.
[148]Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theoretical and Applied Genetics, 1995, 91: 1125-1128.
[149]Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proceedings of the National Academy of Sciences of the USA, 2011, 108: 7727-7732.
[150]Zhang Z, Xu J, Xu Q, Larkin P, Xin Z. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. Theoretical and Applied Genetics, 2004, 109: 433-439.
[151]Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science, 2013, 341: 786-788.
[152]Munns R, James R A, Xu B, Athman A, Conn S J, Jordans C, Byrt C S, Hare R A, Tyerman S D, Tester M, Plett D, Gilliham M. Wheat grain yield on saline soils is improved by an ancestral Na(+) transporter gene. Nature Biotechnology, 2012, 30: 360-364.
[153]Amusan I O, Rich P J, Menkir A, Housley T, Ejeta G. Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytologist, 2008, 178: 157-166.
[154]Concibido V C, La Vallee B, McLaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theoretical and Applied Genetics, 2003, 106: 575-582.
[155]Wang W, He Q, Yang H, Xiang S, Zhao T, Gai J. Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent. Euphytica, 2013, 189: 293-307.
[156] Morrell P L, Buckler E S, Ross-Ibarra J. Crop genomics: advances and applications. Nature Reviews: Genetics, 2012, 13: 85-96.
[1] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[4] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[5] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[6] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[7] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[8] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[9] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[10] DongFeng QIU,PingJuan GE,Gang LIU,JinSong YANG,JianGuo CHEN,ZaiJun ZHANG. Breeding and Evaluation of Elite Rice Line ZY56 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1081-1091.
[11] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[12] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[13] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[14] SHEN ShengFa,XIANG Chao,WU LieHong,LI Bing,LUO ZhiGao. Analysis on the Characteristics of Soluble Sugar Components in Sweetpotato Storage Root and Its Relationship with Taste [J]. Scientia Agricultura Sinica, 2021, 54(1): 34-45.
[15] LI Ying,ZHANG ShuHang,GUO Yan,ZHANG XinFang,WANG GuangPeng. Catkin Phenotypic Diversity and Cluster Analysis of 211 Chinese Chestnut Germplasms [J]. Scientia Agricultura Sinica, 2020, 53(22): 4667-4682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!