Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (15): 3005-3014.doi: 10.3864/j.issn.0578-1752.2015.15.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Component Characteristics of Soil Labile and Recalcitrant Nitrogen Under Different Long-Term Fertilization Systems in East China

YU Wei-shui1, LU Chang-ai1, LI Gui-hua1, WU Hong-liang1, ZHAO Ya-wen1, WANG Bi-sheng1, MENG Fan-hua2

 
  

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving Quality of Arable Land, Beijing 100081
    2Henan Soil and Fertilizer Station, Zhengzhou 450002
  • Received:2015-02-16 Online:2015-08-01 Published:2015-08-01

Abstract: 【Objective】Labile nitrogen (Lab-N) and recalcitrant nitrogen (Rec-N) are two important components of soil nitrogen, and their ratio has an effect on nitrogen turnover and sequestration properties. Therefore, it is important to study the characteristics of Lab-N and Rec-N under different long-term fertilization systems for better nitrogen management and soil fertility improvement. 【Method】Lab-N, Rec-N and their ratio were studied by particle size-density separation method under four long-term fertilizer treatments, namely no fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer combined with straw (NPKS), and chemical fertilizer combined with manure (NPKM), of three upland soils (Gongzhuling black soil, Zhengzhou fluvo-aquic soil and Qiyang red soil) and Wangcheng paddy soil that collected from east China. 【Result】 The average Lab-N in upland soils was 0.15 g·kg-1, much lower than that of paddy soil (0.22 g·kg-1). While Lab-N/TN in upland soils was much higher than that in paddy soil. After 23 years, the Total N (TN) of the upland soils under CK treatment decreased significantly (7.5%-9.7%) compared with the start of the experiment, while in the paddy soil the TN increased by 11.5%. The TN contents in all soils under NPK treatment were significantly higher than that of CK treatment. The Lab-N of red soil under NPK treatment was significantly lower than that of CK treatment, while for other soils there were no significant differences under two treatments. The TN contents of all soils under NPKS treatment increased significantly compared with CK treatment, while there was no significant difference in the Lab-N and Lab-N/TN between black soil and paddy soil. The Lab-N of red soil under NPKS treatment decreased significantly compared with CK treatment, while the Lab-N of fluvo-aquic soil increased significantly. The TN, Lab-N and the Lab-N/TN in the upland soils under NPKM treatment increased significantly. And the black soil increased the most by 85.0%, 106.0% and 4.2%; there was no significant difference in the Lab-N and Lab-N/TN in the paddy soil between NPKM and CK treatments. Both the Rec-N and the TN in four soils under four different treatments were in the order of NPKM>NPKS>NPK>CK. The Rce-N/TN under NPKM decreased significantly compared with CK treatment. 【Conclusion】 Both the Lab-N and the Lab-N/TN in upland soils were more susceptible to fertilizer application compared with paddy soil. The TN, Lab-N and Lab-N/TN all increased significantly under NPKM treatment, and the improvement effect was in the order of NPKM>NPKS>NPK.

Key words: labile nitrogen, recalcitrant nitrogen, upland soil, paddy soil, long-term fertilization

[1]    陆景陵, 胡霭堂. 植物营养学. 北京: 中国农业大学出版社, 1992: 2-15.
Lu J L, Hu A T. Principle of Plant Nutrition. Beijing: China Agriculture University Press, 1992: 2-15. (in Chinese)
[2]    李菊梅, 王朝辉, 李生秀. 有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义. 土壤学报, 2003, 40(2): 232-238.
Li J M, Wang Z H, Li S X. Significance of soil organic matter, total N and mineralizable nitrogen in reflecting soil N supplying capacity. Acta Pedologica Sinica, 2003, 40(2): 232-238. (in Chinese)
[3]    Haynes R J, Beare M H. Aggregation and organic matter storage in meso-thermal, humid soils//Carter M R. Stewart B A. Structure and Organic Matter Storage in Agricultural Soils. CRC Press, 1996: 213-262.
[4]    Haynes R J. Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances in Agronomy, 2005, 85: 221-268.
[5]    Gregorich E G, Carter M R, Doran J W, Pankhurst C E, Dwyer L M. Biological attributes of soil quality. Developments in Soil Science, 1997, 25: 81-114.
[6]    Janzen H H, Campbell C A, Ellert B H, Bremer E. Soil organic matter dynamics and their relationship to soil quality. Developments in Soil Science, 1997, 25: 277-292.
[7]    宋震震, 李絮花, 李娟, 林志安, 赵秉强. 有机肥和化肥长期施用对土壤活性有机氮组分及酶活性的影响. 植物营养与肥料学报, 2014, 20(3): 525-533.
Song Z Z, Li X H, LI J, Lin Z A, Zhao B Q. Long-term effects of mineral versus organic fertilizers on soil labile nitrogen fractions and soil enzyme activities in agricultural soil. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 525-533. (in Chinese)
[8]    高晓宁, 韩晓日, 刘宁, 左仁辉, 吴正超, 杨劲峰. 长期定位施肥对棕壤有机氮组分及剖面分布的影响. 中国农业科学, 2009, 42(8): 2820-2827.
Gao X N, Han X R, Liu N, Zuo R H, Wu Z C, Yang J F. Effects of long-term fertilization on organic nitrogen forms and their distribution in profile of brown soil. Scientia Agriculture Sinica, 2009, 42(8): 2820-2827. (in Chinese)
[9]    王媛, 周建斌, 杨学云. 长期不同培肥处理对土壤有机氮组分及氮素矿化特性的影响. 中国农业科学, 2010, 43(6): 1173-1180.
Wang Y, Zhou J B, Yang X Y. Effects of different long-term fertilization on the fractions of organic nitrogen and nitrogen mineralization in soils. Scientia Agricultura Sinica, 2010, 43(6): 1173-1180. (in Chinese)
[10]   王晋, 庄舜尧, 朱兆良. 不同种植年限水田与旱地土壤有机氮组分变化. 土壤学报, 2014, 51(2): 286-294.
Wang J, Zhuang S Y, Zhu Z L. Fractions of soil organic nitrogen in paddy and upland soils relative to cropping history. Acta Pedologica Sinica, 2014, 51(2): 286-294. (in Chinese)
[11]   张玉树, 丁洪, 王飞, 郑祥洲, 翁伯琦, 林诚, 张晶. 长期施用不同肥料的土壤有机氮组分变化特征. 农业环境科学学报, 2014, 33(10): 1981-1986.
Zhang Y S, Ding H, Wang F, Zheng X Z, Weng B Q, Lin C, Zhang J. Characteristics of organic nitrogen fractions in soils under long-term different fertilization. Journal of Agro-Environment Science, 2014, 33(10): 1981-1986. (in Chinese)
[12]   Wedin D A, Pastor J. Nitrogen mineralization dynamics in grass monocultures. Oecologia, 1993, 96(2): 186-192.
[13]   Rovira P, Vallejo V R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma, 2002, 107(1): 109-141.
[14]   Huygens D, Rütting T, Boeckx P, Van Cleemput O, Godoy R, Müller C. Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem. Soil Biology and Biochemistry, 2007, 39(10): 2448-2458.
[15]   Meijboom F W, Hassink J, van Noordwijk M. Density fractionation of soil macroorganic matter using silica suspensions. Soil Biology and Biochemistry, 1995, 27(8): 1109-1111.
[16]   Müller C, Stevens R J, Laughlin R J. A 15N tracing model to analyse N transformations in old grassland soil. Soil Biology and Biochemistry, 2004, 36(4): 619-632.
[17]   鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 109-196.
Lu R K. Analytical Methods for Soil and Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press, 2000: 109-196. (in Chinese)
[18]   唐继伟, 林治安, 许建新, 戚剑, 王云华. 有机肥与无机肥在提高土壤肥力中的作用. 中国土壤与肥料, 2006(3): 44-47.
Tang J W, Lin Z A, Xu J X, Qi J, Wang Y H. Effect of organic manure and chemical fertilizer on soil nutrient. Soil and Fertilizer Sciences, 2006(3): 44-47. (in Chinese)
[19]   王伯仁, 李冬初, 蔡泽江, 黄晶, 秦琳. 长期不同施肥对红壤碳氮储量的影响. 土壤通报, 2011, 42(4): 808-811.
Wang B R, Li D C, Cai Z J, Huang J, Qin L. Effect of long-term different fertilization on total nitrogen and carbon storage in red soil. Chinese Journal of Soil Science, 2011, 42(4): 808-811. (in Chinese)
[20]   曹宏杰, 汪景宽. 长期不同施肥处理对棕壤不同组分有机碳的影响. 国土与自然资源研究, 2012(6): 85-88.
Cao H J, Wang J K. Effect of long-term fertilization on different fractions of organic of brown soil. Territory and Natural Resources Study, 2012(6): 85-88. (in Chinese)
[21]   林治安, 赵秉强, 袁亮, Hwat Bing-So. 长期定位施肥对土壤养分与作物产量的影响. 中国农业科学, 2009, 42(8): 2809-2819.
Lin Z A, Zhao B Q, Yuan L, Hwat B S. Effects of organic manure and fertilizers long-term located application on soil fertility and crop yield. Scientia Agricultura Sinica, 2009, 42(8): 2809-2819. (in Chinese)
[22]   Yan D, Wang D, Yang L. Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil. Biology and Fertility of Soils, 2007, 44(1): 93-101.
[23]   文帮勇, 杨忠芳, 侯青叶, 杨晓燕, 尹国胜, 衷存堤. 江西鄱阳湖地区土壤酸化与人为源氮的关系. 现代地质, 2011, 25(3): 562-568.
Wen B Y, Yang Z F, Hou Q Y, Yang X Y, Yin G S, Zhong C D. The relationship between soil acidification and nitrogen inputs in Poyang Lake area, Jiangxi province, China . Geoscience, 2011, 25(3): 562-568. (in Chinese)
[24]   李忠佩, 林心雄. 瘠薄红壤中有机物质的分解特征. 生态学报, 2002, 22(8): 1224-1230.
Li Z P, Lin X X. Characteristics of organic materials decomposition in infertile red soil. Acta Ecologica Sinica, 2002, 22(8): 1224-1230. (in Chinese)
[25]   陈小云, 郭菊花, 刘满强, 焦加国, 黄欠如, 赖涛, 李辉信, 胡锋. 施肥对红壤性水稻土有机碳活性和难降解性组分的影响. 土壤学报, 2011, 48(1): 125-131.
Chen X Y, Guo J H, Liu M Q, Jiao J G, Huang Q R, Lai T, Li H X, Hu F. Effects of fertilization on lability and recalcitrantcy of organic carbon of red paddy soils. Acta Pedologica Sinica, 2011, 48(1): 125-131. (in Chinese)
[26]   Liang B C, MacKenzie A F, Schnitzer M, Monreal C M, Voroney P R, Beyaert R P. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils. Biology and Fertility of Soils, 1997, 26(2): 88-94.
[27]   Boone R D. Light-fraction soil organic matter: origin and contribution to net nitrogen mineralization. Soil Biology and Biochemistry, 1994, 26(11): 1459-1468.
[28]   张璐, 张文菊, 徐明岗, 蔡泽江, 彭畅, 王伯仁. 长期施肥对中国3种典型农田土壤活性有机碳库变化的影响. 中国农业科学, 2009, 42(5): 1646-1655.
Zhang L, Zhang W J, Xu M G, Cai Z J, Peng C, Wang B R. Effects of long-term fertilization on change of labile organic carbon in three typical upland soil of China. Scientia Agricultura Sinica, 2009, 42(5): 1646-1655. (in Chinese)
[29]   张明, 白震, 张威, 丁雪丽, 宋斗妍, 朱俊丰, 朱平. 长期施肥农田黑土微生物量碳、氮季节性变化. 生态环境, 2007, 16(5): 1498-1503.
Zhang M, Bai Z, Zhang W, Ding X L, Song D Y, Zhu J F, Zhu P. Seasonal change of long-term fertilization on microbial biomass C and N of arable Mollisol. Ecology and Environment, 2007, 16(5): 1498-1503. (in Chinese)
[30]   蔡泽江. 长期施肥下红壤酸化特征及影响因素[D]. 北京: 中国农业科学院, 2010.
Cai Z J. Acidification characteristics of red soil under long-term fertilization and effect factors[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)
[31]   李辉信, 胡峰, 刘满强, 蔡贵信, 范晓晖. 红壤氮素的矿化和硝化作用特征. 土壤, 2000, 32(4): 194-197.
Li H X, Hu F, Liu M Q, Cai G X, Fan X H. The characteristics of nitrogen mineralization and nitrification in red soil. Soil, 2000, 32(4): 194-197. (in Chinese)
[32]   张永春, 汪吉东, 沈明星, 沈其荣, 许仙菊, 宁运旺. 长期不同施肥对太湖地区典型土壤酸化的影响. 土壤学报, 2010, 47(3): 465-472.
Zhang Y C, Wang J D, Shen M X, Shen Q R, Xu X J, Ning Y W. Effects of long-term fertilization on soil acidification in Taihu Lake region, China. Acta Pedologica Sinica, 2010, 47(3): 465-472. (in Chinese)
[33]   孟红旗, 吕家珑, 徐明岗, 蔡泽江, 王伯仁. 有机肥的碱度及其减缓土壤酸化的机制. 植物营养与肥料学报, 2012, 18(5): 1159-1167.
Meng H Q, Lü J L, Xu M G, Cai Z J, Wang B R. Alkalinity of organic manure and its mechanism for mitigating soil acidification. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1159-1167. (in Chinese)
[34]   孙波, 潘贤章, 王德建, 韩晓增, 张玉铭, 郝明德, 陈欣. 我国不同区域农田养分平衡对土壤肥力时空演变的影响. 地球科学进展, 2008, 23(11): 1201-1208.
Sun B, Pan X Z, Wang D J, Han X Z, Zhang Y M, Hao M D, Chen X. Effects of nutrient balance on spatial and temporal change of soil fertility in defferent agriculture area in china. Advances in Earth Science, 2008, 23(11): 1201-1208. (in Chinese)
[35]   汪洋, 齐晓宁. 德惠市农田黑土肥力评价及施肥措施研究. 中国生态农业学报, 2007, 15(2): 26-28.
Wang Y, Qi X N. Evaluation on black soil nutrients and fertilization recommendation in Dehui City. Chinese Journal of Eco-Agriculture, 2007, 15(2): 26-28. (in Chinese)
[36]   佟小刚, 徐明岗, 张文菊, 卢昌艾. 长期施肥对红壤和潮土颗粒有机碳含量与分布的影响. 中国农业科学, 2008, 41(11): 3664-3671.
Tong X G, Xu M G, Zhang W J, Lu C A. Influence of long-term fertilization on content and distribution of organic carbon in particle-size fractions of red soil and fluvo-aquic soil in China. Scientia Agricultura Sinica, 2008, 41(11): 3664-3671. (in Chinese)
[37]   Kahle M, Kleber M, Jahn R. Predicting carbon content in illitic clay fractions from surface area, cation exchange capacity and dithionite- extractable iron. European Journal of Soil Science, 2002, 53(4): 639-644.
[38]   杨学明, 张晓平, 方华军, 梁爱珍. 20年来部分黑土耕层有机质和全氮含量的变化. 地理科学, 2004, 24(6): 710-714.
Yang X M, Zhang X P, Fang H J, Liang A Z. Changes in organic matter and total nitrogen of black soils in Jilin Province over the past two decades. Scientia Geographica Sinica, 2004, 24(6): 710-714. (in Chinese)
[39]   马常宝, 卢昌艾, 任意, 展晓莹, 李桂花, 张淑香. 土壤地力和长期施肥对潮土区小麦和玉米产量演变趋势的影响. 植物营养与肥料学报, 2012, 18(4): 796-802.
Ma C B, Lu C A, Ren Y, Zhan X Y, Li G H, Zhang S X. Effect of soil fertility and long-term fertilizer application on the yield of wheat and maize in fluvo-aquic soil. Plant Nutrition and Fertilizer Science, 2012, 18(4): 796-802. (in Chinese)
[40]   Liu S, Li Y, Wu J, Su Y, Wei W. Spatial variability of soil microbial biomass carbon, nitrogen and phosphorus in a hilly red soil landscape in subtropical China. Soil Science & Plant Nutrition, 2010, 56(5): 693-704.
[41]   Wu J. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies. European Journal of Soil Science, 2011, 62(1): 29-34.
[42]   Grandy A S, Neff J C. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Science of the Total Environment, 2008, 404(2/3): 297-307.
[43]   Simpson A J, Simpson M J, Smith E, Kelleher B P. Microbially derived inputs to soil organic matter: are current estimates too low? Environmental Science & Technology, 2007, 41(23): 8070-8076.
[1] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[2] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[3] LI DongChu,HUANG Jing,MA ChangBao,XUE YanDong,GAO JuSheng,WANG BoRen,ZHANG YangZhu,LIU KaiLou,HAN TianFu,ZHANG HuiMin. Spatio-Temporal Variations of Soil Organic Matter in Paddy Soil and Its Driving Factors in China [J]. Scientia Agricultura Sinica, 2020, 53(12): 2410-2422.
[4] Lü ZhenZhen,LIU XiuMei,ZHONG JinFeng,LAN XianJin,HOU HongQian,JI JianHua,FENG ZhaoBin,LIU YiRen. Effects of Long-Term Fertilization on Mineralization of Soil Organic Carbon in Red Paddy Soil [J]. Scientia Agricultura Sinica, 2019, 52(15): 2636-2645.
[5] QIU CunPu, CHEN XiaoFen, LIU Ming, LI WeiTao, WU Meng, JIANG ChunYu, FENG YouZhi, LI ZhongPei. Microbial Transformation Process of Straw-Derived C in Two Typical Paddy Soils [J]. Scientia Agricultura Sinica, 2019, 52(13): 2268-2279.
[6] WeiFu PENG, WeiSheng LÜ, Shan HUANG, YongJun ZENG, XiaoHua PAN, QingHua SHI. Effects of Soil Fertility on Rice Yield and Nitrogen Use Efficiency in a Red Paddy Soil [J]. Scientia Agricultura Sinica, 2018, 51(18): 3614-3624.
[7] CHEN XiaoFen, LIU Ming, JIANG ChunYu, WU Meng, LI ZhongPei. Organic Carbon Mineralization in Aggregate Fractions of Red Paddy Soil Under Different Fertilization Treatments [J]. Scientia Agricultura Sinica, 2018, 51(17): 3325-3334.
[8] WANG XiaoLi, GUO Zhen, DUAN JianJun, ZHOU ZhiGang, LIU YanLing, ZHANG YaRong. The Changes of Organic Carbon and Its Fractions in Yellow Paddy Soils Under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2017, 50(23): 4593-4601.
[9] WANG YingYan, LU ShengE, LI YueFei, TU ShiHua, ZHANG XiaoPing, GU YunFu. Response of Anammox Bacteria Community Structure and Vertical Distribution to Different Long-Term Fertilizations in Calcareous Purple Paddy Soil [J]. Scientia Agricultura Sinica, 2017, 50(16): 3155-3163.
[10] FAN Hong-zhu, CHEN Qing-rui, QIN Yu-sheng, CHEN Kun, TU Shi-hua. Characteristics of Phosphorus Accumulation and Movement in a Calcareous Purple Paddy Soil Profile as Affected by Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2016, 49(8): 1520-1529.
[11] ZHAO Ya-nan, CHAI Guan-qun, ZHANG Zhen-zhen, XIE Jun, LI Dan-ping, ZHANG Yue-qiang, SHI Xiao-jun. Soil Organic Carbon Lability of Purple Soil as Affected by Long-Term Fertilization in a Rice-Wheat Cropping System [J]. Scientia Agricultura Sinica, 2016, 49(22): 4398-4407.
[12] LU Yan-hong, LIAO Yu-lin, NIE Jun, ZHOU Xing, XIE Jian, YANG Zeng-ping. Effect of Successive Fertilization on Dynamics of Basic Soil Productivity and Soil Nutrients in Double Cropping Paddy Soils with Different Fertilities [J]. Scientia Agricultura Sinica, 2016, 49(21): 4169-4178.
[13] LI Wei-tao, LI Zhong-pei, LIU Ming, JIANG Chun-yu, WU Meng, CHEN Xiao-fen. Enzyme Activities and Soil Nutrient Status Associated with Different Aggregate Fractions of Paddy Soils Fertilized with Returning Straw for 24 Years [J]. Scientia Agricultura Sinica, 2016, 49(20): 3886-3895.
[14] LIU Yan-ling, LI Yu, ZHANG Ya-rong, ZHANG Wen-an, JIANG Tai-ming. Effect of Long-Term Fertilization on the P Balance and Critical Value of Soil Olsen-P in Paddy Soil from Yellow Earth [J]. Scientia Agricultura Sinica, 2016, 49(10): 1903-1912.
[15] ZHOU Xiao-yang, ZHOU Shi-Wei, XU Ming-gang, Colinet Gilles. Evolution Characteristics and Influence Factors of Acidification in Paddy Soil of Southern China [J]. Scientia Agricultura Sinica, 2015, 48(23): 4811-4817.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!