Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (16): 3155-3163.doi: 10.3864/j.issn.0578-1752.2017.16.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Response of Anammox Bacteria Community Structure and Vertical Distribution to Different Long-Term Fertilizations in Calcareous Purple Paddy Soil

WANG YingYan1, LU ShengE1, LI YueFei1, TU ShiHua2, ZHANG XiaoPing1, GU YunFu1   

  1. 1Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130; 2Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066
  • Received:2017-01-03 Online:2017-08-16 Published:2017-08-16

Abstract: 【Objective】The impacts of long-term fertilizations on the anaerobic ammonium oxidation bacteria (AAOB) community structure and vertical distribution were studied in order to deeply understand the microbial mediated mechanism of anammox reaction, develop a sound fertilization regime and provide theoretical foundations for maintaining the soil quality in this region.【Method】Chemical analysis, real-time PCR and terminal restriction fragment length polymorphism (T-RFLP) were used to analyze the soil physico-chemical properties, the 16S rRNA gene abundance and composition of AAOB community, respectively.【Result】The results showed that compared to no fertilizer application control (CK), all fertilizers decreased the soil pH and nitrate content, while increased soil organic matter (SOM), total nitrogen (TN) and ammonia content. With increasing of soil depth, soil parameters including soil pH, TN, and nitrate content were decreased, while the ammonia content was not obviously changed. The qPCR results showed: the abundance of AAOB 16S rRNA gene peaked in the 0-20 cm layer, while being the lowest in the 20-40 cm depth. Mere nitrogen treatment (N) had an evident positive effect on the abundance of AAOB. The T-RFLP results indicated that in the 0-20 cm layer, the community compositions of AAOB were the most complex, which were also supported by the highest Shannon-wiener diversity index. Compositions of AAOB community in the soil fertilized with N only were the simplest, while those in the soil amended with CK were the richest. Besides, the predominant AAOB were phylogenetically affiliated to Candidatus Brocadia. Redundant gradient analysis (RDA) showed that pH was the key factor in shaping the AAOB community in calcareous purple paddy soil amended with different fertilizer treatments.【Conclusion】This study suggested that mere N fertilizer would decrease the compositions of AAOB community in calcareous purple paddy soil but increase their abundances. The topsoil (0-20 cm) was the main distribution soil depth in calcareous purple paddy soil for AAOB.

Key words: long-term fertilization, Calcareous Purple Paddy soil, T-RFLP, anammox bacteria

[1]    MULDER A, VAN DE GRAAF A A, Robertson L A, Kuenen J G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 1995, 16(3): 177-184.
[2]    Strous M, Heijnen J J, Kuenen J,Jetten M S M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology & Biotechnology, 1998, 50(5): 589-596.
[3]    Engstrom P, Dalsgaard T, Hulth S, Aller R C. Anaerobic ammonium oxidation by nitrite (anammox): implications for N2 production in coastal marine sediments. Geochim Cosmochim Acta, 2005, 69(8):2057-2065.
[4]    Jetten M S M, Op den Camp H J M, Kuenen J G, Strous M. Description of the order Brocadiales //Krieg N R, Staley J T, Hedlund B P, Paster B J, Ward N, Ludwig W, Whitman W B. Bergey’s Manual of Systematic Bacteriology(vol 4). Heidelberg: Springer, 2010: 506-603.
[5]    Strous M, Fuerst J A, Kramer E H M, Logemann S, Muyzer G, van de Pas-Schoonen K T, Webb R, Kuenen J G, Jetten M S M. Missing lithotroph identified as new planctomycete. Nature, 1999, 400(6743): 446-449.
[6]    Schmid M C, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M S M, Metzger J W, Schleifer K H, Wagner M. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Systematic and Applied Microbiology, 2000, 23(1):93-106.
[7]    Schmid M C, Walsh K, Webb R I, Rijpstra W I, van de Pas-Schoonen K, Verbruggen M J, Hill T, Moffett B, Fuerst J, Schouten S, Damsté J J S, Harris J, Shaw P, Jetten M S M, Strous M. Candidatus ‘Scalindua brodae’, sp. nov., Candidatus ‘Scalindua wagneri’, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Systematic and applied microbiology, 2003, 26(4):529 -538.
[8]    Quan Z X, Rhee S K, Zuo J E, Yang Y, Bae J W, Park J R, Lee S T, Park Y H. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environmental Microbiology, 2008, 10(11):3130 -3139.
[9]    Kartal B, Rattray J, van Niftrik L A, van de Vossenberg J, Schmid M C, Webb R I, Schouten S, Fuerst J A, Damsté J J S, Jetten M M S, Strous M. Candidatus ‘Anammoxoglobus propionicus’ a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 2007, 30(1):39-49.
[10]   Liu S, Yang F, Gong Z, Meng F, Chen H, Xue Y, Furukawa K. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresource Technology, 2008, 99(15): 6817-6825.
[11]   Hu B L, Zheng P, Tanga C J, Chen J W, van der Biezen E, Zhang L, Ni B J, Jetten M S M, Yan J, Yu H Q, Kartal B. Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Research, 2010, 44(17): 5014-5020.
[12]   Tsushimaa I, Ogasawaraa Y, Kindaichib T, Satoh H, Okabe S. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Research, 2007, 41(8): 1623-1634.
[13]   Kuypers M M M, SliekersA O, Lavik G, Schmid M., Jørgensen B B, Kuenen J G, Damsté J S S, Strous M, Jetten M S M. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 2003, 422(6932): 608-611.
[14]   Zhu G B, Wang S, Wang Y, Wang C, Risgaard-Petersen N, Jetten M S M, Yin C. Anaerobic ammonia oxidation in a fertilized paddy soil. The ISME journal, 2011, 5 (12):1905-1912.
[15]   Shen L D, Liu S, Lou L P, Liu W P, Xu X Y, Zheng P, Hu B L. Broad distribution of diverse anaerobic ammonium-oxidizing bacteria in Chinese agricultural soils. Applied and Environmental Microbiology, 2013, 79(19): 6167-6172.
[16]   Shen L D, Wu H S, Gao Z Q, Xu X H, Chen T X, Liu S, Cheng H X. Occurrence and importance of anaerobic ammonium- oxidising bacteria in vegetable soils. Applied Microbiology and Biotechnology, 2015, 99(13): 5709-5718.
[17]   Yang X R, Li H, Nie S A, Su J Q, Weng B S, Zhu G B, Yao H Y, Gilbert J A, Zhu Y G. Potential contribution of anammox to nitrogen loss from paddy soils in Southern China. Applied and Environmental Microbiology, 2015, 81(3): 938-947.
[18]   Shen L D, Liu S, Huang Q, Lian X, He Z F, Geng S, Jin R C, He Y F, Lou L P, Xu X Y, Zheng P, Hu B L. Evidence for the co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field. Applied and Environmental Microbiology, 2014, 80(24): 7611-7619.
[19]   范改娜, 祝贵兵, 王雨, 王衫允, 王朝旭, 尹澄清. 河流湿地氮循环修复过程中的新型功能微生物. 环境科学学报, 2010, 30(8): 1558-1563.
Fan G N, Zhu G B, Wang Y, Wang S Y, Wang C X, Yin C Q. New functional microorganisms in nitrogen cycle restoration of river riparian ecosystems. Acta Scientiae Circumstantiae, 2010, 30(8): 1558-1563.(in Chinese)
[20]   辜运富, 张小平, 涂仕华, Kristina Lindström. 长期定位施肥对石灰性紫色水稻土古菌群落结构的影响. 生物多样性, 2011, 19(3): 369-376.
Gu Y F, Zhang X P, Tu S H, Lindström K. Effect of long-term fertilization on archaeal community structure in calcareous purplish paddy soil. Biodiversity Science, 2011, 19(3): 369-376. (in Chinese)
[21]   卢圣鄂, 王蓥燕, 陈勇, 涂仕华, 张小平, 辜运富. 不同施肥制度对石灰性紫色水稻土中氨氧化古菌群落结构的影响. 生态学报, 2016, 36(21): 6919-6927.
LU S E, WANG Y Y, CHEN Y, TU S H, ZHANG X P, GU Y F. Impact of different long-term fertilization system on ammonia oxidation Archaea community structure in Calcareous Purple Paddy soil. Acta Ecologica Sinica, 2016, 36(21): 6919-6927. (in Chinese)
[22]   辜运富, 云翔, 张小平, 涂仕华, 孙锡发, Kristina Lindström. 不同施肥处理对石灰性紫色土微生物数量及氨氧化细菌群落结构的影响. 中国农业科学, 2008, 41(12): 4119-4126.
GU Y F, YUN X, ZHANG X P, TU S H, SUN X F, Lindström K. Effect of different fertilizer treatments on soil microbes and ammonium oxidizing bacterial community in a Calcareous Purple Paddy Soil. Scientia Agricultura Sinica, 2008, 41(12): 4119-4126. (in Chinese)
[23]   Gu Y F, Zhang X P, Tu S H, Lindström K. Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping. European Journal of Soil Biology, 2009, 45(3): 239-246.
[24]   鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. The Chemical Analysis Method of Agricultural Soil. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[25]   Hamersley M R, Lavik G, Woebken D, Rattray J E, Lam P, Hopmans E C, Damsté J S S, Krüger S, Graco M, Gutiérrez D, Kuypers M. M. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnology and Oceanography, 2007, 52(3): 923-933.
[26]   储昭瑞, 李相昆, 孟令威, 张杰. T-RFLP技术在厌氧氨氧化菌群结构分析中的应用. 哈尔滨工业大学学报, 2013, 45(2): 26-30.
CHU Z R, LI X K, MENG L W, ZHANG J. Identification of anaerobic in environmental ammonium-oxidizing bacteria samples by T-RFLP. Journal of Harbin Institute of Technology, 2013, 45(2): 26-30. (in Chinese)
[27]   Blackwood C B, Marsh T L, Kim S H, Paul E A. Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Applied and Environmental Microbiology, 2003, 69(2): 926-932.
[28]   Dang H, Zhou H, Zhang Z, Yu Z, Hua E, Liu X, Jiao N. Molecular detection of candidatus scalindua pacifica and environmental responses of sediment Anammox bacterial community in the Bohai Sea, China. Plos One, 2013, 8(4): 61330.
[29]   孙瑞莲, 赵秉强, 朱鲁生, 徐晶, 张夫道. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用. 植物营养与肥料学报, 2003, 9(4): 406-410.
SUN R L, ZHAO B Q, ZHU L S, XU J, ZHANG F D. Effect of long-term fertilization on soil enzyme activities and its role in adjusting-controlling soil fertility. Plant Nutrition and Fertilizer Science, 2003, 9(4): 406-410. (in Chinese)
[30]   林治安, 赵秉强, 袁亮, Hwat Bing-So.长期定位施肥对土壤养分与作物产量的影响. 中国农业科学, 2009, 42(8): 2809-2819.
LIN Z A, ZHAO B Q, YUAN L, HWAT B S. Effects of manure and fertilizers long-term located application on soil fertility and crop yield. Scientia Agricultura Sinica, 2009, 42(8): 2809-2819. (in Chinese)
[31]   Murase J, Hida A, Ogawa K, Nonoyama T, Yoshikawa N, Imai, K. Impact of long-term fertilizer treatment on the microeukaryotic community structure of a rice field soil. Soil Biology and Biochemistry, 2015, 80: 237-243.
[32]   Zhang Q, Liang G, Myrold D D, Zhou W. Variable responses of ammonia oxidizers across soil particle-size fractions affect nitrification in a long-term fertilizer experiment. Soil Biology and Biochemistry, 2017,105: 25-36.
[33]   Hui C, Guo X, Sun P, Lin H, Zhang Q, Liang Y, Zhao Y H. Depth-specific distribution and diversity of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in upland- cropping soil under different fertilizer treatments. Applied Soil Ecology, 2017, 113: 117-126.
[34]   Islam M R, Chauhan P S, Kim Y, Kim M, Sa T. Community level functional diversity and enzyme activities in paddy soils under different long-term fertilizer management practices. Biology and Fertility of Soils, 2011, 47(5): 599-604.
[35]   Zhao J, Ni T, Li Y, Xiong W, Ran W, Shen B. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS One, 2014, 9(1): 85301.
[36]   Zhu G, Wang S, Wang W, Wang Y, Zhou L, Jiang B, Op den Camp H J M, Risgaard-Petersen N, Schwark L, Peng Y Z, Hefting M M, Jetten M S M, Yin C Q. Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nature Geoscience, 2013, 6(2): 103-107.
[37]   Bai R, Chen X, He J Z, Shen J P, Zhang L M. Candidatus Brocadia and Candidatus Kuenenia predominated in anammox bacterial community in selected Chinese paddy soils. Journal of Soils and Sediments, 2015, 15(9): 1977-1986.
[38]   Zhao Y, Xia Y, Kana T M, Wu Y, Li X, Yan X. Seasonal variation and controlling factors of anaerobic ammonium oxidation in freshwater river sediments in the Taihu Lake region of China. Chemosphere, 2013, 93(9): 2124-2131.
[39]   Schmid M C, Risgaard‐Petersen N, Van De Vossenberg J, Kuypers M M, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr M K, Strous M, Op den Camp H J M, Jetten M S M. Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environmental Microbiology, 2007, 9(6): 1476-1484.
[40] Könneke M, Bemhard A E, José R, Walker C B, Waterbury J B, Stahl D A. Isolation of an autotrophic ammonia- oxidizing marine archaeon. Nature, 2005, 437(7058): 543-546.
[1] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[2] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[3] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[4] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[5] XiuZhi ZHANG,Qiang LI,HongJun GAO,Chang PENG,Ping ZHU,Qiang GAO. Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223.
[6] YaLin LI,XuBo ZHANG,FengLing REN,Nan SUN,Meng XU,MingGang XU. A Meta-Analysis of Long-Term Fertilization Impact on Soil Dissolved Organic Carbon and Nitrogen Across Chinese Cropland [J]. Scientia Agricultura Sinica, 2020, 53(6): 1224-1233.
[7] WANG Le,CHEN YanHua,ZHANG ShuXiang,MA ChangBao,SUN Nan,LI ChunHua. Evolution of Fluvo-Aquic Soil Productivity Under Long-Term Fertilization and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2020, 53(11): 2232-2240.
[8] LI DongChu,WANG BoRen,HUANG Jing,ZHANG YangZhu,XU MingGang,ZHANG ShuXiang,ZHANG HuiMin. Change of Phosphorus in Red Soil and Its Effect to Grain Yield Under Long-Term Different Fertilizations [J]. Scientia Agricultura Sinica, 2019, 52(21): 3830-3841.
[9] WANG Qiong,ZHAN XiaoYing,ZHANG ShuXiang,PENG Chang,GAO HongJun,ZHANG XiuZhi,ZHU Ping,GILLES Colinet. Phosphorus Adsorption and Desorption Characteristics and Its Response to Soil Properties of Black Soil Under Long-Term Different Fertilization [J]. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877.
[10] SHEN FengMin,JIANG GuiYing,ZHANG YuJun,LIU Fang,LIU ShiLiang,LIU KaiLou. Response of Different Forms of Nitrogen Migration in Typical Red Soil to Long-Term Different Fertilization Systems [J]. Scientia Agricultura Sinica, 2019, 52(14): 2468-2483.
[11] WANG HuiYing, XU MingGang, ZHOU BaoKu, MA Xiang, DUAN YingHua. Response and Driving Factors of Bacterial and Fungal Community to Long-Term Fertilization in Black Soil [J]. Scientia Agricultura Sinica, 2018, 51(5): 914-925.
[12] GUO Jing,LUO PeiYu,YANG JinFeng,LI DongDong,HUANG YueYue,HAN XiaoRi. Influence of Long-term Fertilization on Community Structures and Colonization of Arbuscular mycorrhizal Fungi in a Brown Soil [J]. Scientia Agricultura Sinica, 2018, 51(24): 4677-4689.
[13] Ke WANG, ChunLi XU, YuTing ZHANG, ZhiBin ZHENG, DingYong WANG, XiaoJun SHI. Cd Accumulation and Safety Assessment of Soil-Crop System Induced by Long-Term Different Fertilization [J]. Scientia Agricultura Sinica, 2018, 51(18): 3542-3550.
[14] WANG QingFeng, JIANG Xin, MA MingChao, GUAN DaWei, ZHAO BaiSuo, WEI Dan, CAO FengMing, LI Li, LI Jun. Influence of Long-Term Nitrogen and Phosphorus Fertilization on Arbuscular Mycorrhizal Fungi Community in Mollisols of Northeast China [J]. Scientia Agricultura Sinica, 2018, 51(17): 3315-3324.
[15] CHEN XiaoFen, LIU Ming, JIANG ChunYu, WU Meng, LI ZhongPei. Organic Carbon Mineralization in Aggregate Fractions of Red Paddy Soil Under Different Fertilization Treatments [J]. Scientia Agricultura Sinica, 2018, 51(17): 3325-3334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!