Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (15): 2995-3004.doi: 10.3864/j.issn.0578-1752.2015.15.009
• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles Next Articles
CAI An-dong1, ZHANG Wen-ju1, YANG Pin-pin2, HAN Tian-fu1, XU Ming-gang1
[1] Schmidt M W I, Torn M S, Abiven S, Dittmar T, Guggenberger G, Janssens I A, Kleber M, Kogel-Knabner I, Lehmann J, Manning D A C, Nannipieri P, Rasse D P, Weiner S, Trumbore S E. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478(7367): 49-56.
[2] Bolin B, Fung I. The carbon cycle revisited. University Corporation for Atmospheric Research, Modeling the Earth System[C]. UCAR, Boulder, CO, 1992: 151-164.
[3] Kimetu J M, Lehmann J, Kinyangi J M, Cheng C H, Thies J, Mugendi D N, Pell A. Soil organic C stabilization and thresholds in C saturation. Soil Biology & Biochemistry, 2009, 41(10): 2100-2104.
[4] Piao S L, Fang J Y, Ciais P, Peylin P, Huang Y, Sitch S, Wang T . The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458(7241): 1009-1013.
[5] Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103.
[6] 唐光木, 徐万里, 周勃, 梁智, 葛春辉. 耕作年限对棉田土壤颗粒及矿物结合态有机碳的影响. 水土保持学报, 2013, 27(3): 237-241.
Tang G M, Xu W L, Zhou B, Liang Z, Ge C H. Effects of cultivation years on particulate organic carbon and mineral-associated organic carbon in cotton soil. Journal of Soil and Water Conservation, 2013, 27(3): 237-241. (in Chinese)
[7] Feng W, Plante A F, Aufdenkampe A K, Six, J. Soil organic matter stability in organo-mineral complexes as a function of increasing C loading. Soil Biology and Biochemistry, 2014, 69: 398-405.
[8] Zhao L, Sun Y, Zhang X, Yang X, Drury C F. Soil organic carbon in clay and silt sized particles in Chinese mollisols: relationship to the predicted capacity. Geoderma, 2006, 132: 315-323.
[9] Trumbore S. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications, 2000, 10: 399-411.
[10] Kundu S, Bhattacharyya R, Prakash V, Ghosh B N, Gupta H S. Carbon sequestration and relationship between carbon addition and storage under rainfed soybean-wheat rotation in a sandy loam soil of the Indian Himalayas. Soil and Tillage Research, 2007, 92(1): 87-95.
[11] Zhang H M, Xu M G, Zhang W J, He X H. Factors affecting potassium fixation in seven soils under 15-year long-term fertilization. Chinese Science Bulletin, 2009, 54(10): 1773-1780.
[12] Zhang W J, Wang X J, Xu M G, Huang S M, Liu H, Peng C. Soil organic carbon dynamics under long-term fertilizations in arable land of northern China. Biogeosciences, 2010, 7(2): 409-425.
[13] Bajgai Y, Kristiansen P, Hulugalle N, Mchenry M. Changes in soil carbon fractions due to incorporating corn residues in organic and conventional vegetable farming systems. Soil Research, 2014, 52(3): 244-252.
[14] Huang S, Peng X, Huang Q, Zhang W J. Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China. Geoderma, 2010, 154(3): 364-369.
[15] 兰延, 黄国勤, 杨滨娟, 陈洪俊, 王淑彬 . 稻田绿肥轮作提高土壤养分增加有机碳库. 农业工程学报, 2014, 30(13): 146-152.
Lan Y, Huang G Q, Yang B J, Chen H J, Wang S B. Effect of green manure rotation on soil fertility and organic carbon pool. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13): 146-152. (in Chinese)
[16] 孟磊, 丁维新, 蔡祖聪, 钦绳武. 长期定量施肥对土壤有机碳储量和土壤呼吸影响. 地球科学进展, 2005, 20(6): 687-692.
Meng L, Ding W X, Cai Z C, Qin S W. Storage of soil organic C and soil respiration as effected by long-time quantitation fertilization. Advances in Earth Science, 2005, 20(6): 687-692. (in Chinese)
[17] Franzluebbers A J, Stuedemann J A. Surface soil changes during twelve years of pasture management in the Southern Piedmont USA. Soil Science Society of America Journal, 2010, 74(6): 2131-2141.
[18] Angers D A, Chantigny M H, MacDonald J D, Rochette P, Côté D. Differential retention of carbon, nitrogen and phosphorus in grassland soil profiles with long-term manure application. Nutrient Cycling in Agroecosystems, 2010, 86(2): 225-229.
[19] 马成泽, 周勤, 何方. 不同肥料配合施用土壤有机碳盈亏分布. 土壤学报, 1994, 31(1): 34-41.
Ma C Z, Zhou Q, He F. Surplus-deficit distribution of organic carbon in soil under combined fertilization. Acta Pedologica Sinica, 1994, 31(1): 34-41. (in Chinese)
[20] Yu H, Ding W, Luo J, Cai Z. Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil and Tillage Research, 2012, 124: 170-177.
[21] Niu L A, Hao J M, Zhang B Z, Niu X S. Influences of long-term fertilizer and tillage management on soil fertility of the north China plain. Pedosphere, 2011, 21(6): 813-820.
[22] Rosenberg M S, Adams D C, Gurevitch J. MetaWin. Statistical Software for Meta-Analysis.Version, 2000, 1.
[23] Geisseler D, Scow K M. Long-term effects of mineral fertilizers on soil microorganisms-a review. Soil Biology and Biochemistry, 2014, 75: 54-63.
[24] Hedges L V, Gurevitch J, Curtis P S. The meta-analysis of response ratios in experimental ecology. Ecology, 1999, 80(4): 1150-1156.
[25] Curtis P S, Wang X. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 1998, 113(3): 299-313.
[26] Luo Y, Hui D, Zhang D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology, 2006, 87(1): 53-63.
[27] Lal R, Follett R F, Stewart B A, Kimble J M. Soil carbon sequestration to mitigate climate change and advance food security. Soil Science, 2007, 172(12): 943-956.
[28] Davidson E A, Savage K, Bolstad P, Clark D A, Curtis P S, Ellsworth D S, Hanson P J, Law B E, Luo Y, Pregitzer K S, Randolph J C, Zak D. Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology, 2002, 113(1): 39-51.
[29] Lu F. How can straw incorporation management impact on soil carbon storage? A meta-analysis. Mitigation and Adaptation Strategies for Global Change, 2014: 1-24.
[30] Witt C, Cassman K G, Olk D C, Biker U, Liboon S P, Samson M I, Ottow J C G. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant and Soil, 2000, 225(1/2): 263-278.
[31] Zhang H, Xu M, Zhang F. Long-term effects of manure application on grain yield under different cropping systems and ecological conditions in China. The Journal of Agricultural Science, 2009, 147(1): 31-42.
[32] Huang S, Sun Y, Zhang W. Changes in soil organic carbon stocks as affected by cropping systems and cropping duration in China’s paddy fields: a meta-analysis. Climatic Change, 2012, 112(3/4): 847-858.
[33] Wu T Y, Schoenau J J, Li F G, Qian P Y, Malhi S S, Shi Y C, Xu F L. Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China. Soil and Tillage Research, 2004, 77(1): 59-68.
[34] Dijkstra F A, Cheng W. Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecology Letters, 2007, 10(11): 1046-1053.
[35] Wang L, Qiu J J, Tang H, Li H, Li C S, Ranst E V. Modelling soil organic carbon dynamics in the major agricultural regions of China. Geoderma, 2008, 147(1): 47-55.
[36] Sukkariyah B, Evanylo G, Zelazny L. Distribution of copper, zinc, and phosphorus in Coastal Plain soils receiving repeated liquid biosolids applications. Journal of Environmental Quality, 2007, 36(6): 1618-1626.
[37] 蔡岸冬, 徐香茹, 张旭博, 徐明岗, 张文菊. 不同利用方式下土壤矿物结合态有机碳特征与容量分析. 中国农业科学, 2014, 47(21): 4291-4299.
Cai A D, Xu X R, Zhang X B, Xu M G, Zhang W J. Capacity and characteristics of mineral associated soil organic carbon under various land uses. Scientia Agricultura Sinica, 2014, 47(21): 4291-4299. (in Chinese)
[38] Feller C, Beare M H. Physical control of soil organic matter dynamics in the tropics. Geoderma, 1997, 79(1): 69-116. |
[1] | WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286. |
[2] | YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299. |
[3] | ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117. |
[4] | WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810. |
[5] | SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491. |
[6] | GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545. |
[7] | LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556. |
[8] | MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603. |
[9] | QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109. |
[10] | WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171. |
[11] | LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961. |
[12] | YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613. |
[13] | LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677. |
[14] | XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143. |
[15] | MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224. |
|