Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (22): 4398-4407.doi: 10.3864/j.issn.0578-1752.2016.22.012

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Soil Organic Carbon Lability of Purple Soil as Affected by Long-Term Fertilization in a Rice-Wheat Cropping System

ZHAO Ya-nan1, CHAI Guan-qun1, ZHANG Zhen-zhen1, XIE Jun1, LI Dan-ping1, ZHANG Yue-qiang1,2, SHI Xiao-jun1,2

 
  

  1. 1College of Resources and Environment, Southwest University, Chongqing 400716
    2National Monitoring Station of Soil Fertility and Fertilizer Efficiency on Purple Soils, Chongqing 400716
  • Received:2016-05-13 Online:2016-11-16 Published:2016-11-16

Abstract: Objective Based on a 22-year fertilization experiment, soil organic carbon (SOC) and its lability under different long-term fertilization were studied to investigate the SOC quantity and quality of purple soil and their responses to long-term fertilization in a rice-wheat cropping system.MethodThere were six fertilization treatments including no fertilizer (CK), chemical N fertilizer alone (N), chemical NPK fertilizers (NPK), chemical NPK fertilizers plus straw (NPKS), high amount of chemical NPK fertilizers plus equal amount of straw (1.5NPKS) and chemical NPK fertilizer plus manure (NPKM). In soil samples at 0-20, 20-40 and 40-60 cm depths, the labile organic carbon (LOC) and its three fractions with different labilities, i.e., high LOC (HLOC), middle LOC (MLOC) and low LOC (LLOC), were determined according to the oxidation by 33, 167 and 333 mmol·L-1 potassium permanganate (KMnO4) solution, and carbon management index (CMI) was determined by total SOC (TOC) and LOC, and CK was used as reference.ResultThe TOC and LOC were 9.2-16.5 g·kg-1 and 1.58-3.67 g·kg-1 across all treatments and soil depths, respectively. Long-term fertilization could maintain or improve the TOC, LOC content and CMI, with greater improvement on the 0-20 cm soil layer than other layers. Compared with no fertilization, the increases in NPKS treatment were 32.5%, 25.7% and 5.3% for TOC, 37.0%, 44.7% and 9.3% for LOC, 38%, 49% and 9% for CMI on 0-20, 20-40 and 40-60 cm soil layers, respectively, which were relatively greater than other fertilization treatments. Long-term fertilization significantly improved the content of HLOC, MLOC and LLOC on three soil layers with greater increase in treatments with combined application of mineral and organic fertilizers (NPKS, 1.5NPKS and NPKM) than mineral fertilizers alone (NPK and N), while the effect of long-term fertilization on proportions of three labile fractions to LOC was relatively small, indicating that long-term fertilization did not alter the distribution pattern of different LOC fractions. However, the content and proportions of HLOC, MLOC and LLOC were significantly affected by soil depth. On the average, HLOC, MLOC and LLOC accounted for 23.6%, 35.6% and 40.7% of LOC on 0-20 cm soil layer while 30.5%, 44.8% and 24.7% in 20-40 cm soil due to great decline of LLOC content. The LOC, HLOC, MLOC and LLOC were linearly and positively correlated with TOC content, indicating that LOC and its fractions could be used as indicators of TOC change caused by management practices.ConclusionThese results suggested that long-term fertilization could maintain or improve the quantity and lability of SOC and thus CMI, and combined application NPK fertilizers with straw return is the recommended practice to promote both the TOC and LOC accumulation of purple soil in the rice-wheat cropping system.

Key words: soil organic carbon, labile organic carbon, carbon management index, long-term fertilization, rice-wheat rotation, paddy soil

[1]    Lal R. Beyond Copenhagen: Mitigating climate change and achieving food security through soil carbon sequestration. Food Security, 2010, 2(2): 169-177.
[2]    Paustian K, Lehmann J, Ogle S, Reay D, Roberson G P, Smith P. Climate-smart soils. Nature, 2016, 532(7597): 49-57.
[3]    Haynes R J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advances in Agronomy, 2005, 85: 221-268.
[4]    沈宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应. 生态学杂志, 1999, 18(3): 32-38.
Shen H, Cao Z H, Hu Z Y. Characteristics and ecological effects of the active organic carbon in soil. Chinese Journal of Ecology, 1999, 18(3): 32-38. (in Chinese)
[5]    骆坤, 胡桂荣, 张文菊, 周宝库, 徐明岗, 张敬业, 夏平平. 黑土有机碳、氮及其活性对长期施肥的响应. 环境科学, 2013, 34(2): 676-684.
Luo K, Hu G R, Zhang W J, Zhou B K, Xu M G, Zhang J Y, Xia P P. Response of black soil organic carbon, nitrogen and its availability to long-term fertilization. Environmental Science, 2013, 34(2): 676-684. (in Chinese)
[6]    Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466.
[7]    Loginow W, Wisniewski W, Gonet S S, Ciescinska B. Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science, 1987, 20(1): 47-52.
[8]    徐明岗, 于荣, 孙小凤, 刘骅, 王伯仁, 李菊梅. 长期施肥对我国典型土壤活性有机质及碳库管理指数的影响. 植物营养与肥料学报, 2006, 12(4): 459-465.
Xu M G, Yu R, Sun X F, Liu H, Wang B R, Li J M. Effects of long-term fertilization on labile organic matter and carbon management index (CMI) of the typical soils of China. Plant Nutrition and Fertilizer Science, 2006, 12(4): 459-465. (in Chinese)
[9]    何翠翠, 王立刚, 王迎春, 张文, 杨晓辉. 长期施肥下黑土活性有机质和碳库管理指数研究. 土壤学报, 2015, 52(1): 194-202.
He C C, Wang L G, Wang Y C, Zhang W, Yang X H. Effect of long-term fertilization on labile organic matter and carbon pool management index of black soil. Acta Pedologica Sinica, 2015, 52(1): 194-202. (in Chinese)
[10]   徐明岗, 于荣, 王伯仁. 长期不同施肥下红壤活性有机质与碳库管理指数变化. 土壤学报, 2006, 43(5): 723-729.
Xu M G, Yu R, Wang B R. Labile organic matter and carbon management index in red soil under long-term fertilization. Acta Pedologica Sinica, 2006, 43(5): 723-729. (in Chinese)
[11]   Weil R R, Islam K R, Stine M A, Gruver J B, Samson-Liebig S E. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture, 2003, 18(1): 3-17.
[12]   Culman S W, Snapp S S, Freeman M A, Schipanski M E, Beniston J, Lal R, Drinkwater L E, Franzluebber A J, Glover J D, Grandy A S, Lee J, Six J, Maul J E, Mirksy S B, Spaigo J T, Wander M M. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Science Society of America Journal, 2012, 76(2): 494-504.
[13]   Morrow J G, Huggins D R, Carpenter-Boggs L A, Reganold J P. Evaluating measures to assess soil health in long-term agroecosystem trials. Soil Science Society of America Journal, 2016, 80(2): 450-462.
[14]   王朔林, 杨艳菊, 王改兰, 赵旭, 陈春玉, 黄学芳. 长期施肥对栗褐土活性有机碳的影响. 生态学杂志, 2015, 34(5): 1223-1228.
Wang S L, Yang Y J, Wang G L, Zhao X, Chen C Y, Huang X F. Effect of long-term fertilization on labile organic carbon in cinnamon soil. Chinese Journal of Ecology, 2015, 34(5): 1223-1228. (in Chinese)
[15]   Yang X, Ren W, Sun B, Zhang S. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma, 2012, 177: 49-56.
[16]   曾骏, 郭天文, 于显枫, 董博. 长期施肥对土壤活性有机碳和碳库管理指数的影响. 土壤通报, 2011, 42(4): 812-815.
Zeng J, Guo T W, Yu X F, Dong B. Effect of fertilization on soil active C and C pool management index. Chinese Journal of Soil Science, 2011, 42(4): 812-815. (in Chinese)
[17]   Timsina J, Connor D J. Productivity and management of rice- wheat cropping systems: Issues and challenges. Field Crops Research, 2001, 69(2): 93-132.
[18]   范明生, 江荣风, 张福锁, 吕世华, 刘学军. 水旱轮作系统作物养分管理策略. 应用生态学报, 2008, 19(2): 424-432.
Fan M S, Jiang R F, Zhang F S, LÜ S H, Liu X J. Nutrient management strategy of rice-upland crop rotation system. Chinese Journal of Applied Ecology, 2008, 19(2): 424-432. (in Chinese)
[19]   Kukal S S, Benbi D K. Soil organic carbon sequestration in relation to organic and inorganic fertilization in rice-wheat and maize-wheat systems. Soil and Tillage Research, 2009, 102(1): 87-92.
[20]   Witt C, Cassman K G, Olk D C, Biker U, Liboon S P, Samson M I, Ottow J C G. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant and Soil, 2000, 225(1/2): 263-278.
[21]   Huang S, Sun Y, Zhang W. Changes in soil organic carbon stocks as affected by cropping systems and cropping duration in China’s paddy fields: a meta-analysis. Climatic change, 2012, 112(3/4): 847-858.
[22]   何毓蓉. 中国紫色土(下). 北京: 科学出版社, 2003.
He Y R. Purple Soil in China (II). Beijing: Science Press, 2003. (in Chinese)
[23]   张璐, 张文菊, 徐明岗, 蔡泽江, 彭畅, 王伯仁, 刘骅. 长期施肥对中国3种典型农田土壤活性有机碳库变化的影响. 中国农业科学, 2009, 42(5): 1646-1655.
Zhang L, Zhang W J, Xu M G, Cai Z J, Peng C, Wang B R, Liu H. Effects of long-term fertilization on change of labile organic carbon in three typical upland soils of China. Scientia Agricultura Sinica, 2009, 42(5): 1646-1655. (in Chinese)
[24]   鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
Lu R K. Analytical Methods of Soil Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[25]   ZHAO Y, ZHANG Y, LIU X, HE X, SHI X. Carbon sequestration dynamic, trend and efficiency as affected by 22-year fertilization under a rice-wheat cropping system. Journal of Plant Nutrition and Soil Science, 2016, 179(5): 652-660.
[26]   Jiang G, Xu M, He X, Zhang W, Guang S, Yang X, Liu H, Peng C, Shirato Y, Lizumi T, Wang J, Murphy D V. Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios. Global Biogeochemical Cycles, 2014, 28(3): 319-333.
[27]   Majumder B, Mandal B, Bandyopadhyay P K, Gangopadhyay A, Mani P K, Kundu A L, Mazumdar D. Organic amendments influence soil organic carbon pools and rice-wheat productivity. Soil Science Society of America Journal, 2008, 72(3): 775-785.
[28]   Tonitto C, Goodale C L, Weiss M S, Frey S D, Ollinger S V. The effect of nitrogen addition on soil organic matter dynamics: A model analysis of the Harvard Forest Chronic Nitrogen Amendment Study and soil carbon response to anthropogenic N deposition. Biogeochemistry, 2014, 117(2/3): 431-454.
[29]   KHAN S A, MULVANEY R L, ELLSWORTH T R, BOAST C W. The myth of nitrogen fertilization for soil carbon sequestration. Journal of Environment Quality, 2007, 36(6): 1821-1832.
[30]   YAN X, ZHOU H, ZHU Q H, WANG X F, ZHANG Y Z, YU X C, PENG X. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil and Tillage Research, 2013, 130: 42-51.
[31]   Pandey D, Agrawal M, Bohra J S, Adhya T K, Bhattacharyya P. Recalcitrant and labile carbon pools in a sub-humid tropical soil under different tillage combinations: A case study of rice–wheat system. Soil and Tillage Research, 2014, 143: 116-122.
[32]   张瑞, 张贵龙, 姬艳艳, 李刚, 常泓, 杨殿林. 不同施肥措施对土壤活性有机碳的影响. 环境科学, 2013, 34(1): 277-282.
Zhang R, Zhang G L, Ji Y Y, Li G, Chang H, Yang D L. Effects of different fertilizer application on soil active organic carbon. Environmental Science, 2013, 34(1): 277-282. (in Chinese)
[33]   Jenkinson D S, Rayner J H. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science, 1977, 123(5): 298-305.
[34]   Olk D C, Cassman K G, Randall E W, Kinchesh P, Sanger L J, Anderson L M. Changes in chemical properties of organic matter with intensified rice cropping in tropical lowland soil. European Journal of Soil Science, 1996, 47(3): 293-303.
[35]   Huang X, Jiang H, Li Y, Ma Y, Tang H, Ran W, Shen Q. The role of poorly crystalline iron oxides in the stability of soil aggregate-associated organic carbon in a rice-wheat cropping system. Geoderma, 2016, 279: 1-10.
[36]   Xiang S R, Doyle A, Holden P A, Schimel J P. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology and Biochemistry, 2008, 40(9): 2281-2289.
[1] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[2] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[3] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[4] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[5] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[6] ZHANG XinYao,ZHANG Min,ZHU YuanPeng,HUI XiaoLi,CHAI RuShan,GAO HongJian,LUO LaiChao. Effects of Reduced Phosphorus Application on Crop Yield and Grain Nutritional Quality in the Rice-Wheat Rotation System in Chaohu Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(19): 3791-3806.
[7] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[8] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[9] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[10] CAO HanBing,XIE JunYu,LIU Fei,GAO JianYong,WANG ChuHan,WANG RenJie,XIE YingHe,LI TingLiang. Mineralization Characteristics of Soil Organic Carbon and Its Temperature Sensitivity in Wheat Field Under Film Mulching [J]. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622.
[11] WANG JinYu,CHENG WenLong,HUAI ShengChang,WU HongLiang,XING TingTing,YU WeiJia,WU Ji,LI Min,LU ChangAi. Effects of Deep Plowing and Organic-Inorganic Fertilization on Soil Water and Nitrogen Leaching in Rice Field [J]. Scientia Agricultura Sinica, 2021, 54(20): 4385-4395.
[12] LI Na,SUN ZhanXiang,ZHANG YanQing,LIU EnKe,LI FengMing,LI ChunQian,LI Fei. Contribution of Carbon Sources in Sedimentary Soils Combining Carbon and Nitrogen Isotope with Stable Isotope Model [J]. Scientia Agricultura Sinica, 2021, 54(14): 3057-3064.
[13] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[14] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[15] XiuZhi ZHANG,Qiang LI,HongJun GAO,Chang PENG,Ping ZHU,Qiang GAO. Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!