Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (10): 2017-2028.doi: 10.3864/j.issn.0578-1752.2015.10.014

• HORTICULTURE • Previous Articles     Next Articles

The Core Collection Construction of Xinjiang Wild Apricot Based on ISSR Molecular Markers

LIU Juan, LIAO Kang, ZHAO Shi-rong, CAO Qian, SUN Qi, LIU Huan   

  1. Research Center for Xinjiang Characteristic Fruit Tree of Xinjiang Agricultural University, Urumqi 830052
  • Received:2014-10-29 Online:2015-05-16 Published:2015-05-16

Abstract: 【Objective By comparison analysis of the results of different sampling strategies and genetic distances, the method for constructing core collection of Xinjiang wild apricot based on molecular markers data was studied in order to establish the optimum core collection resources which will be beneficial to the protection and use of resources. 【Method】 Taking 135 wild apricots as materials that were come from Huocheng Daxigou, Xinyuan Boersai and Gongliu Yiligedai in Xinjiang, using UPGMA stepwise clustering method according to SM, Jaccard and Nei&Li genetic distances for initial collection, until any one sampling location was no collection into the core collection, then an allele preferred sampling strategy was used to construct wild apricot core collection and compared with the random sampling strategy. The number of lost allele and t-test of number of polymorphic loci, percentage of polymorphic loci, observed number of alleles, effective number of alleles, Nei’s genetic diversity and Shannon information index for gene diversity were used to determine the optimal building methods. T-tests of core collection, initial collection and reserve collection were conducted, and the genetic diversity of them was compared to evaluate the representative of core collections. The principal coordinate analysis method and the phenotypic traits of initial and core collections were used to confirm the core germplasm.【Result】Compared with the random sampling strategy, allele preferred sampling strategy could construct more representative core collections that with higher values of genetic diversity indexes and little polymorphic loci. According to Nei&Li genetic distance, the constructed core collection of Xinjiang wild apricot was better than by SM and Jaccard genetic distance for these core collections had high values of genetic diversity indexes. The analysis of principal coordinate analysis and phenotypic traits showed that the core collection of Xinjiang wild apricot constructed by allele preferred sampling strategy and Nei&Li genetic distance could more comprehensively represent at the genetic diversity of wild apricot initial collection. The 31 core collection resources of wild apricot includes 22.96% germplasm samples of the initial collection, the retention ratio of number of polymorphic loci, percentage of polymorphic loci, observed number of alleles, effective number of alleles, Nei's genetic diversity and Shannon information index were 92.69%, 98.83%, 99.42%, 103.26%, 109.24% and 108.31%, respectively. 【Conclusion】 The method of allele preferred sampling strategy and Nei&Li genetic distance by stepwise clustering is a suitable method for constructing Xinjiang wild apricot core collection. These results demonstrated that the 31 core collection could stand for original collection excellently, at the same time this research method of the construction of core collection has important reference values for other crops.

Key words: Xinjiang wild apricot, core collection, ISSR markers, allele preferred sampling strategy, genetic diversity

[1]    俞德俊. 落叶果树分类学. 上海: 上海科学技术出版社, 1984: 67.
Yu D J. Deciduous Fruit Trees Taxonomy. Shanghai: Shanghai Scientific and Technical Publishers, 1984: 67. (in Chinese)
[2]    张加延, 张钊. 中国果树志·杏卷. 北京: 中国林业出版社, 2003: 120-124.
Zhang J Y, Zhang Z. Chinese fruit trees·apricot volume. Beijing: China Forestry Publishing House, 2003: 120-124. (in Chinese)
[3]    何天明, 陈学森, 张大海, 徐麟, 刘宁, 高疆生, 许正. 中国普通杏种质资源若干生物学性状的频度分布. 园艺学报, 2007, 34(1): 17-22.
He T M, Chen X S, Zhang D H, Xu L, Liu N, Gao J S, Xu Z. Fequency distribution of several biological characters in different apricot ecogeographical groups native to China. Acta Horticulture Sinica, 2007, 34(1): 17-22. (in Chinese)
[4]    热依曼·牙森, 玉素甫·阿布力提甫. 新疆杏资源及其开发利用. 新疆农业科学, 2005, 42(增): 49-51.
Yasen R Y M, Abulitipu Y S P. Xinjiang apricot resources and its exploitation and utilization. Xinjiang Agriculture Sinica, 2005, 42(add): 49-51. (in Chinese)
[5]    刁永强. 新疆野生杏生殖生物学特性初步研究[D]. 乌鲁木齐: 新疆农业大学, 2009.
Diao Y Q. Initial research on generative biological characteristics of wild apricot (Armeniaca vulgaris Lam.) in Xinjiang [D]. Urumqi: Xinjiang Agricultural University, 2009. (in Chinese)
[6]    林培钧, 崔乃然. 天山野果林资源—伊犁野果林综合研究. 北京: 中国林业出版社, 2000: 141.
Lin P J, Cui N R. The Wild Fruit Wood Resources of Tianshan Mountain-Yili Wild Fruit Wood Comprehensive Research. Beijing: China Forestry Publishing House, 2003: 141. (in Chinese)
[7]    张春雨. 新疆野苹果(Malu ssieversii)群体遗传结构与核心种质构建方法[D]. 山东泰安: 山东农业大学, 2008.
Zhang C Y. Population genetic structure and method of constructing core collection for Malus sieversii[D]. Taian, Shandong: Shandong Agricultural University, 2008. (in Chinese)
[8]    马玉敏. 中国野生板栗(Castanea mollissim Blume)群体遗传结构与核心种质构建方法[D]. 山东泰安: 山东农业大学, 2009.
Ma Y M. Population genetic structure and method of constructing core collection for Castanea mollissima Blume[D]. Tai’an, Shandong: Shandong Agricultural University, 2009. (in Chinese)
[9]    Frankel O H. Genetic Perspectives of Germplasm Conservation. In: Arber W, Illmensee K, Peacock W J, Starlinger P (eds). Genetic Manipulation: Impact on Man and Society. Cambridge: Cambridge University Press, 1984: 161-170.
[10]   Frankel O H, Brown A H D. Plant Genetic Resources Today: A Critical Appraisal. In: Holden J H W, Williams J T (eds). Crop Genetic Resources: Conservation and Evaluation. London: George Allen and Unwin, 1984: 249-257.
[11]   Brown A H D, Frankel O H, Marshall R D. The Use of Plant Genetic Resources. Cambridge, England: Cambridge University Press, 1989: 136-156.
[12]   张春雨, 陈学森, 张艳敏, 苑兆和, 刘遵春, 王延龄, 林群. 采用分子标记构建新疆野苹果核心种质的方法. 中国农业科学, 2009, 42(2): 597-604.
Zhang C Y, Chen X S, Zhang Y M, Yuan Z H, Liu Z C, Wang Y L, Lin Q. A method for constructing core collection of Malus sieversii using molecular markers. Scientia Agricultura Sinica, 2009, 42(2): 597-604. (in Chinese)
[13]   刘勇, 孙中海, 刘德春, 吴波, 周群. 利用分子标记技术选择柚类核心种质资源. 果树学报, 2006, 23(3): 339-345.
Liu Y, Sun Z H, Liu D C, Wu B, Zhou Q. Screening the core collection of pomelo germplasm based on molecular marker. Journal of Fruit Science, 2006, 23(3): 339-345. (in Chinese)
[14]   王红霞, 赵书岗, 高仪, 玄立春, 张志华. 基于AFLP分子标记的核桃核心种质的构建. 中国农业科学, 2013, 46(23): 4985-4995.
Wang H X, Zhao S G, Gao Y, Xuan L C, Zhang Z H. A construction of the core-collection of Juglans regia L. based on AFLP molecular markers. Scientia Agricultura Sinica, 2013, 46(23): 4985-4995. (in Chinese)
[15]   郭大龙, 刘崇怀, 张君玉, 张国海. 葡萄核心种质的构建. 中国农业科学, 2012, 45(6): 1135-1143.
Guo D L, Liu C H, Zhang J Y, Zhang G H. Construction of grape core collections. Scientia Agricultura Sinica, 2012, 45(6): 1135-1143. (in Chinese)
[16]   卜海东, 张冰冰, 宋洪伟, 梁英海, 刘延杰, 程显敏, 顾广军, 刘畅. 利用SSR结合表型性状构建寒地梨资源核心种质. 园艺学报, 2012, 39(11): 2113-2123.
Bu H D, Zhang B B, Song H W, Liang Y H, Liu Y J, Cheng X M, Gu G J, Liu C. Construction core collections of pear germplasms in cold region by SSR and phenotypic traits. Acta Horticulturae Sinica, 2012, 39(11): 2113-2123. (in Chinese)
[17]   沈进. 中国石榴资源初级核心种质构建及其1SSR分子标记研究[D]. 合肥: 安徽农业大学, 2008.
Shen J. Study on construction of primary core collection in pomegranate germplasm resources in China and its ISSR marker [D]. Hefei: Anhui Agricultural University, 2008. (in Chinese)
[18]   李宝印. 中原牡丹品种遗传多样性与核心种质构建研究[D]. 北京: 北京林业大学, 2007.
Li B Y. Studies on genetic diversity and construction of core collection of tree peony cultivars from Chinese Central Plains [D]. Beijing: Beijing Forestry University, 2007. (in Chinese)
[19]   赵冰. 腊梅种质资源遗传多样性与核心种质构建的研究[D].北京: 北京林业大学, 2008.
Zhao B. Studies on genetic diversity and construction of core collection of Chimonanthus praecox [D]. Beijing: Beijing Forestry University, 2008. (in Chinese)
[20]   张龙进. 山茱萸种质资源遗传多样性分析及核心种质构建方法研究[D]. 西安: 陕西师范大学, 2012.
Zhang L J. Studies on genetic diversity and construction of core collection of Cornus officinalis Sieb.et Zucc.[D]. Xi’an: Shaanxi Normal University, 2012. (in Chinese)
[21]   Lefort F, Douglas G C. An efficient micromethod of DNA isolation from mature leaves of four hardwood tree species Acer, Fraxinus, Prunus and Quercus. Annals of Forest Science, 1999, 56: 259-263.
[22]   刘威生, 冯晨静, 杨建民, 刘冬成, 张爱民, 李少华. 杏ISSR反应体系的优化和指纹图谱的构建. 果树学报, 2005, 22(6): 626-629.
Liu W S, Feng C J, Yang J M, Liu D C, Zhang A M, Li S H. Optimization of ISSR reaction system and construction of cultivar fingerprint in apricot. Journal of Fruit Science, 2005, 22(6): 626-629. (in Chinese)
[23]   张青林, 罗正荣. ISSR及其在果树上的应用. 果树学报, 2004, 21(1): 54-58.
Zhang Q L, Luo Z R. ISSR technology and its application in fruit trees. Journal of Fruit Science, 2004, 21(1): 54-58. (in Chinese)
[24]   Hu J, Zhu J, Xu H M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theoretical and Applied Genetics, 2000, 101: 264-268.
[25]   王建成, 胡晋, 黄歆贤, 徐盛春. 植物核心种质构建数据和代表性评价参数的研究进展. 种子, 2008, 27(8): 52-55.
Wang J C, Hu J, Huang X X, Xu S C. Progress in constructing data and evaluating parameters of representativeness for plant core collection. Seed, 2008, 27(8): 52-55. (in Chinese)
[26]   Jansen J, Hintum T. Genetic distance sampling: a novel sampling method for obtaining core collections using genetic distances with an application to cultivated lettuce. Theoretical and Applied Genetics, 2007, 114: 421-428.
[27]   Weir B S. Sampling properties of gene diversity. In: Brown A H D, Clegg M T, Kahler A L (eds). Plant Population Genetics, Breeding, and Genetic Resources[M]. Sunderland, Massachusetts: Sinauer Associates Inc, 1989: 23-42.
[28]   李自超, 张洪亮, 曹永生, 裘宗恩, 魏兴华, 汤圣祥, 余萍, 王象 坤. 中国地方稻种资源初级核心种质取样策略研究. 作物学报2003, 29(1): 20-24.
Li Z C, Zhang H L, Cao Y S, Qiu Z E, Wei X H, Tang S X, Yu P, Wang X K. Studies on the sampling strategy for initial core collection of Chinese ingenious rice. Acta Agronomica Sinica, 2003, 29(1): 20-24. (in Chinese)
[29]   胡建斌, 马双武, 王吉明, 苏艳, 李琼. 基于表型性状的甜瓜核心种质构建. 果树学报, 2013, 30(3): 404-411.
Hu J B, Ma S W, Wang J M, Su Y, Li Q. Establishment of a melon (Cucumis melo) core collection based on phenotypic characters. Journal of Fruit Science, 2013, 30(3): 404-411. (in Chinese)
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[8] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[9] LI JiaWei,SU JiangShuo,ZHANG Fei,FANG WeiMin,GUAN ZhiYong,CHEN SuMei,CHEN FaDi. Construction of Core Collection of Traditional Chrysanthemum morifolium Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2021, 54(16): 3514-3526.
[10] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[11] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[12] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[13] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[14] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[15] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!