Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (7): 1277-1287.doi: 10.3864/j.issn.0578-1752.2015.07.03

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Advances in Research of the Regulation of Transcription Factors of Lignin Biosynthesis

GUO Guang-yan, BAI Feng, LIU Wei, BI Cai-li   

  1. College of Life Science, Hebei Normal University, Shijiazhuang 050024
  • Received:2014-09-30 Online:2015-04-01 Published:2015-04-01

Abstract: Lignin is an important component of secondary cell wall in vascular plants and has important biological functions. Lignin, cellulose and hemicellulose are crosslinked in the cell wall and provide mechanical support for the plant cells and tissues. The hydrophobic property of lignin makes it impermeable to water, which facilitates the long-distance transport of water and nutrients in plant. Lignin and cellulose are natural physical barriers to various pathogens, which improve the defensive ability against biotic and abiotic stresses. While lignin also has some negative effects on the productive practice, e.g., in pulp and paper industry, many chemicals must be used to remove lignin, which increases the cost of pulping and pollution to the environment. High lignin content in the forage decreases the digestibility of livestocks and affect the nutritive value of forages. Higher lignin content also has a negative effect on the fermentation efficiency of biomass energy. Therefore, it is of great significance to improve the lignin degradability by genetic engineering. In higher plants, lignin can be synthesized by phenylpropanoid pathway and specific lignin biosynthesis pathway. Previous research has shown that NAC, MYB and WRKY transcription factors involved in the regulation of lignin biosynthesis pathway. In Arabidopsis, MYB26 can activate the transcription of NST1/NST2; WRKY12 can bind to the promoter region of NST2 and regulate its expression negatively. SND1 (NST3) and NST1 function redundantly in the regulation of secondary wall synthesis in fibers; NST1 and NST2 are redundant in regulating secondary wall thickening in anther walls; VND6 and VND7 mainly involved in xylem vessel differentiation. All these NAC transcription factors can bind to the downstream MYB transcription factors such as MYB83, MYB46 as well as (or) MYB58, MYB63, MYB85 and MYB103 to regulate lignin biosynthesis positively, whereas MYB75 regulates the lignin biosynthesis negatively. Most of the MYBs in this network can bind to the AC elements (I, II and III) in the promoters of the lingin biosynthesis pathway genes and therefore regulate their expression. Some studies also suggested the involvement of bHLH transcription factors in the regulation of lignin biosynthesis pathway. In this paper, advances in research of the regulation of transcription factors on lignin biosynthesis were reviewed, the major regulatory network of lignin biosynthesis in Arabidopsis was produced, some transcription factors related to lignin biosynthesis in other species (e.g. rice, wheat, maize, eucalyptus, pine and populus) were also summarized. With the development of high-throughput sequencing technology, key regulatory transcription factors will be discovered in more species, which will have an important reference to the lignin modification by genetic engineering.

Key words: lignin, biosynthesis, transcription factor, regulation

[1]    Zhong R, Taylor J J, Ye Z H. Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. The Plant Cell, 1997, 9(12): 2159-2170.
[2]    Graven P, de Koster C G, Boon J J, Bouman F. Structure and macromolecular composition of the seed coat of the Musaceae. Annals of Botany, 1996, 77: 105-122.
[3]    Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J Jr, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T. The path forward for biofuels and biomaterials. Science, 2006, 311(5760): 484-489.
[4]    BoerjanW, Ralph J, Baucher M. Lignin biosynthesis. Annual Review of Plant Biology, 2003, 54: 519-546.
[5]    Baucher M, Halpin C, Petit-Conil M, Boerjan W. Lignin: Genetic engineering and impact on pulping. Critical Reviews in Biochemistry and Molecular Biology, 2003, 38(4): 305-350.
[6]    Humphreys J M, Chapple C. Rewriting the lignin roadmap. Current Opinion in Plant Biology, 2002, 5(3): 224-229.
[7]    Raes J, Rohde A, Christensen J H, Van de Peer Y, Boerjan W. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiology, 2003, 133(3): 1051-1071.
[8]    章霄云, 郭安平, 贺立卡, 孔华. 木质素生物合成及其基因调控的研究进展. 分子植物育种, 2006, 4(3): 431-437.
Zhang X Y, Guo A P, He L K, Kong H. Advances in study of lignin biosynthesis and its genetic manipulation. Molecular Plant Breeding, 2006, 4(3): 431-437. (in Chinese)
[9]    Whiting P, Goring D A I. Chemical characterization of tissue fractions from the middle lamella and secondary wall of black spruce tracheids. Wood Science and Technology, 1982, 16: 261-267.
[10]   Aida M, Ishida T, Fukaki H, Tasaka M. Genes involved in organ separation in Arabidopsis, analysis of the cup-shaped cotyledon mutant. The Plant Cell, 1997, 9(6): 841-857.
[11]   Ernst H A, Olsen A N, Larsen S, Lo Leggio L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors.  The EMBO Reports, 2004, 5(3): 297-303.
[12]   Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research, 2003, 10(6): 239-247.
[13]   Qu L J, Zhu Y X. Transcription factor families in Arabidopsis: Major progress and outstanding issues for future research. Current Opinion in Plant Biology, 2006, 9(5): 544-549.
[14]   Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell, 2005, 17 (11): 2993-3006.
[15]   Yang C, Xu Z, Song J, Conner K, Vizcay Barrena G, Wilson Z A. Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. The Plant Cell, 2007, 19(2): 534-548.
[16]   Zhong R, Lee C, Zhou J, McCarthy R L, Ye Z H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. The Plant Cell, 2008, 20(10): 2763-2782.
[17]   Zhong R, Demura T, Ye Z H. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. The Plant Cell, 2006, 18(11): 3158-3170.
[18]   Zhong R, Richardson E A, Ye Z H. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta, 2007, 225(6): 1603-1611.
[19]   Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. The Plant Cell, 2007, 19(1): 270-280.
[20]   Zhong R, Richardson E A, Ye Z H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. The Plant Cell, 2007, 19(9): 2776-2792.
[21]   McCarthy R L, Zhong R, Ye Z H. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant and Cell Physiology, 2009, 50(11): 1950-1964.
[22]   Zhou J, Lee C, Zhong R, Ye Z H. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. The Plant Cell, 2009, 21(1): 248-266.
[23]   Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito  J, Mimura T, Fukuda H, Demura T. Transcription switches for protoxylem and metaxylem vessel formation. Genes & Development, 2005, 19(16): 1855-1860.
[24]   Yamaguchi M, Goué N, Igarashi H, Ohtani M, Nakano Y, Mortimer J C, Nishikubo N, Kubo M, Katayama Y, Kakegawa K, Dupree P, Demura T. VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR- RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiology, 2010, 153(3): 906-914.
[25]   Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. The Plant Journal, 2011, 66(4): 579-590.
[26]   Ko J H, Beers E P, Han K H. Global comparative transcriptome analysis identifies gene network regulating secondary xylem development in Arabidopsis thaliana. Molecular Genetics and Genomics, 2006, 276(6): 517-531.
[27]   Ko J H, Yang S H, Park A H, Lerouxel O, Han K H. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. The Plant Journal, 2007, 50(6): 1035-1048.
[28]   Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. The Plant Cell, 2010, 22(4): 1249-1263.
[29]   Zhao C, Avci U, Grant E H, Haigler C H, Beers E P. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. The Plant Journal, 2008, 53(3): 425-436.
[30]   Zhong R, Lee C, Ye Z H. Functional characterization of poplar wood-associated nac domain transcription factors. Plant Physiology, 2010, 152 (2): 1044-1055.
[31]   Zhong R, Lee C, McCarthy R L, Reeves C K, Jones E G, Ye Z H. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors. Plant and Cell Physiology, 2011, 52(10): 1856-1871.
[32]   Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology, 2001, 4(5): 447-456.
[33]   Chen Y H, Yang X Y, He K, Liu M H, Li J G, Gao Z F, Lin Z Q, Zhang Y F, Wang X X, Qiu X M, Shen Y P, Zhang L, Deng X H, Luo J C, Deng X W, Chen Z L, Gu H Y, Qu L J. The MYB transcription factor superfamily of Arabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 2006, 60(1): 107-124.
[34]   Rabinowicz P D, Braun E L, Wolfe A D, Bowen B, Grotewold E. Maize R2R3 Myb genes: Sequence analysis reveals amplification in the higher plants. Genetics, 1999, 153(1): 427-444.
[35]   Jia L, Clegg M T, Jiang T. Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiology, 2004, 134(2): 575-585.
[36]   Cedroni M L, Cronn R C, Adams K L, Wilkins T A, Wendel J F. Evolution and expression of MYB genes in diploid and polyploid cotton. Plant Molecular Biology, 2003, 51(3): 313-325.
[37]   Hatton D, Sablowski R, Yung M H, Smith C, Schuch W, Bevan M. Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco. The Plant Journal, 1995, 7(6): 859-876.
[38]   Sablowski R W, Moyano E, Culianez-Macia F A, Schuch W, Martin C, Bevan M. A flower-specific MYB protein activates transcription of phenylpropanoid biosynthetic genes. The EMBO Journal, 1994, 13(1): 128-137.
[39]   Grotewold E, Drummond B J, Bowen B, Peterson T. The MYB- homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell, 1994, 76(3): 543-553.
[40]   Mizutani M, Ohta D, Sato R. Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiology, 1997, 113(3): 755-763.
[41]   Rogers L A, Dubos C, Surman C, Willment J, Cullis I F, Mansfield S D, Campbell M M. Comparison of lignin deposition in three ectopic lignification mutants. New Phytologist, 2005, 168(1): 123-140.
[42]   Kim W C, Kim J Y, Ko J H, Kim J, Han K H. Transcription factor MYB46 is an obligate component of the transcriptional regulatory complex for functional expression of secondary wall-associated cellulose synthesis in Arabidopsis thaliana. Journal of Plant Physiology, 2013, 170(15): 1374-1378.
[43]   Bhargava A, Mansfield S D, Hall H C, Douglas C J, Ellis B E. MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiology, 2010, 154(3): 1428-1438.
[44]   Nakano Y, Nishikubo N, Goué N, Ohtani M, Yamaguchi Katayama Y, Demura T. MYB transcription factors orchestrating the developmental program of xylem vessels in Arabidopsis roots. Plant Biotechnology, 2010, 27: 267-272.
[45]   Ohman D, Demedts B, Kumar M, Gerber L, Gorzsás A, Goeminne G, Hedenström M, Ellis B, Boerjan W, Sundberg B. MYB103 is required for FERULATE-5-HYDROXYLASE expression and syringyl lignin biosynthesis in Arabidopsis stems. The Plant Journal, 2013, 73(1): 63-76.
[46]   Preston J, Wheeler J, Heazlewood J, Li S F, Parish R W. AtMYB32 is required for normal pollen development in Arabidopsis thaliana. The Plant Journal, 2004, 40(6): 979-995.
[47]   Newman L J, Perazza D E, Juda L, Campbell M M. Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotype. The Plant Journal, 2004, 37(2): 239-250.
[48]   Ko J H, Han K H, Park S, Yang J. Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiology, 2004, 135(2): 1069-1083.
[49]   Patzlaff A, Newman L J, Dubos C, Whetten R W, Smith C, McInnis S, Bevan M W, Sederoff R R, Campbell M M. Characterisation of Pt MYB1, an R2R3-MYB from pine xylem. Plant Molecular Biology, 2003, 53(4): 597-608.
[50]   Patzlaff A, McInnis S, Courtenay A, Surman C, Newman L J, Smith C, Bevan M W, Mansfield S, Whetten R W, Sederoff R R, Campbell M M. Characterisation of a pine MYB that regulates lignification. The Plant Journal, 2003, 36(6): 743-754.
[51]   Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. The Plant Journal, 2005, 43(4): 553-567.
[52]   Legay S, Sivadon P, Blervacq A S, Pavy N, Baghdady A, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A, Hawkins S, Mackay J, Grima-Pettenati J. EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytologist, 2010, 188(3): 774-786.
[53]   Bomal C, Bedon F, Caron S, Mansfield S D, Levasseur C, Cooke J E, Blais S, Tremblay L, Morency M J, Pavy N, Grima-Pettenati J, Séguin A, Mackay J. Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: A comparative in planta analysis. Journal of Experimental Botany, 2008, 59(14): 3925-3939.
[54]   Craven-Bartle B, Pascual M B, Cánovas F M, Avila C. A MYB transcription factor regulates genes of the phenylalanine pathway in maritime pine. The Plant Journal, 2013, 74(5): 755-766.
[55]   Karpinska B, Karlsson M, Srivastava M, Stenberg A, Schrader J, Sterky F, Bhalerao R, Wingsle G. MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Molecular Biology, 2004, 56(2): 255-270.
[56]   McCarthy R L, Zhong R, Fowler S, Lyskowski D, Piyasena H, Carleton K, Spicer C, Ye Z H. The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant Cell Physiology, 2010, 51(6): 1084-1090.
[57]   Sonbol F M, Fornalé S, Capellades M, Encina A, Touriño S, Torres J L, Rovira P, Ruel K, Puigdomènech P, Rigau J, Caparrós-Ruiz D. The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Molecular Biology, 2009, 70(3): 283-296.
[58]   Fornalé S, Shi X, Chai C, Encina A, Irar S, Capellades M, Fuguet E, Torres J L, Rovira P, Puigdomènech P, Rigau J, Grotewold E, Gray J, Caparrós-Ruiz D. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. The Plant Journal, 2010, 64(4): 633-644.
[59]   Ma Q H, Wang C, Zhu H H. TaMYB4 cloned from wheat regulates lignin biosynthesis through negatively controlling the transcripts of both cinnamyl alcohol dehydrogenase and cinnamoyl-CoA reductase genes. Biochimie, 2011, 93(7): 1179-1186.
[60]   Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde J P, Mérillon J M, Hamdi S. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiology, 2006, 140(2): 499-511.
[61]   Xu Q, Yin X R, Zeng J K, Ge H, Song M, Xu C J, Li X, Ferguson I B, Chen K S. Activator- and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway. Journal of Experimental Botany, 2014, 65(15): 4349-4359.
[62]   Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia F A, Roberts K, Martin C. The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. The Plant Cell, 1998, 10(2): 135-154.
[63]   Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C.Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. The EMBO Journal, 2000, 19(22): 6150-6161.
[64]   Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang C F, Lynn D, Dow J M, Roberts K, Martin C. Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. The Plant Cell, 1998, 10(11): 1801-1816.
[65]   Wang H, Avci U, Nakashima J, Hahn M G, Chen F, Dixon R A. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(51): 22338-22343.
[66]   Ko J H, Kim W C, Han K H. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. The Plant Journal, 2009, 60(4): 649-665.
[67]   Yan L, Xu C, Kang Y, Gu T, Wang D, Zhao S, Xia G. The heterologous expression in Arabidopsis thaliana of sorghum transcription factor SbbHLH1 downregulates lignin synthesis. Journal of Experimental Botany, 2013, 64(10): 3021-3032.
[68] Hirano K, Kondo M, Aya K, Miyao A, Sato Y, Antonio B A, Namiki  N, Nagamura Y, Matsuoka M. Identification of transcription factors involved in rice secondary cell wall formation. Plant Cell Physiology, 2013, 54(11): 1791-1802.
[1] LI XuFei,YANG ShengDi,LI SongQi,LIU HaiNan,PEI MaoSong,WEI TongLu,GUO DaLong,YU YiHe. Analysis of VlCKX4 Expression Characteristics and Prediction of Transcriptional Regulation in Grape [J]. Scientia Agricultura Sinica, 2023, 56(1): 144-155.
[2] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[3] FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036.
[4] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[5] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[6] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[7] PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696.
[8] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[9] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[10] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[11] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[12] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[13] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[14] MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25.
[15] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!