Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (6): 1052-1062.doi: 10.3864/j.issn.0578-1752.2015.06.02

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Application of Specific Molecular Markers of Thinopyrum bessarabicum Löve Based on RNA-seq

LI Chen-xu, LIU Zhi-tao, ZHUANG Li-fang, QI Zeng-jun   

  1. College of Agronomy, Nanjing Agricultural University/National Key Laboratory of Crop Genetics and Germplasm Enhancement /JCIC-MCP, Nanjing 210095
  • Received:2014-09-25 Online:2015-03-16 Published:2015-03-16

Abstract: 【Objective】Development of adequate molecular markers covering the whole genome of an alien species is becoming more and more important in identifying the homoeology and structure of the alien chromosomes, developing small segmental translocations, tracing target genes and physical mapping. Thinopyrum bessarabicum Löve is an important alien species with multiple beneficial genes for wheat breeding, 8 wheat alien lines involving seven chromosomes (arm) of Th. bessarabicum have been developed in Cytogenetics Institute, Nanjing Agricultural University, China. Recently, many small segmental translocations involving different chromosomes of Th. bessarabicum have been induced via irradiation, gametocidal chromosomes and ph1b system. However, the current markers are not enough to identify these translocations. To develop more specific markers, a transcriptome of Th. bessarabicum leaves at tillering stage was sequenced and assembled.【Method】The sequences were then used to blast against the D genome sequences of Aegilops tauschii and 4957 “no hits found” sequences probably representing Th.bessarabicum specific were used for primers development.【Result】Of 507 pairs of primers, 204 produced specific amplicons in Th. bessarabicum with a polymorphism (40.2%) quite higher than 12% showed in 134 primers developed based on wheat ESTs and 14% showed in 100 primers developed based on the transcriptome sequences of Th. bessarabicum. Of them, 64 pairs of primers had no amplification in wheat indicating species specific. Using 8 wheat alien lines involving seven chromosomes or arms of Th. bessarabicum, total 198 including 189 markers developed based on the transcriptome sequences of Th.bessarabicum were chromosomally mapped, which distributed on 1J, 2JS, 2JL, 3JS, 4JS, 4JL, 5J, 6JS, 6JL and 7JS, respectively, with a number of 31, 15, 26, 20, 12, 12, 27, 13, 22 and 20. Using these markers, three wheat alien translocations involved chromosomes 1J and 6J preliminarily designated as T1JS·1JL-W, T6JS·W, T6JS-W·W and one intercalary translocation with two specific markers were identified. After analysis on these translocations, 7 markers were mapped on the distal part of 1JL and 23 on the left part of 1J. For 6JS, 8 markers were mapped on the distal region and 4 on the pericentric region of 6JS. 【Conclusion】Blast against wheat D genome sequences with the transcriptome sequences of Th. bessarabicum, a high efficient way to develop markers specific for alien species of both wheat and other crops was developed. These markers facilitate both the identification of wheat alien translocations and physical mapping.

Key words: Thinopyrum bessarabicum, transcriptome, molecular markers, translocations

[1]    Colmer T D, Flowers T J, Munns R. Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany, 2006, 57(5): 1059-1078.
[2]    Niu Z X, Klindworth D L, Friesen T L, Chao S M, Jin Y, Cai X W, Xu S S. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics, 2011, 187(4): 11-21.
[3]    Qi Z J, Du P, Qian B L, Zhuang L F, Chen H F, Chen T T, Shen J, Guo J, Feng Y G, Pei Z Y. Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS.2BL) translocation line. Theoretical and Applied Genetics, 2010, 121(3): 89-97.
[4]    Shen Y F, Shen J, Dawadondup, Zhuang L F, Wang Y Z, Pu J, Feng Y G, Chu C G, Wang X E, Qi Z J. Physical localization of a novel blue-grained gene derived from Thinopyrum bessarabicum. Molecular Breeding, 2013, 31(1): 195-204.
[5]    Liu W X, Danilova T V, Rouse M N, Bowden R L, Friebe B, Gill B S, Pumphrey M O. Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theoretical and Applied Genetics, 2013, 126(5): 1167-1177.
[6]    Chen P D, You C F, Hu Y, Chen S W, Zhou B, Cao A Z, Wang X E. Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Molecular Breeding, 2013, 31(2): 477-484.
[7]    裴自友, 温辉芹, 陈华锋, 庄丽芳, 亓增军, 百萨偃麦草在小麦遗传改良中的应用研究进展. 陕西农业科学, 2008(1): 70-73.
Pei Z Y, Wen H Q, Chen H F, Zhuang L F, Qi Z J. Advances and prospects on application of Thinopyrum bessarabicum in the genetic improvement of wheat. Shaanxi Journal of Agricultural Sciences, 2008(1): 70-73. (in Chinese)
[8]    King I P, Forster B P, Law C C, Cant K A, Orford S E, Gorham J, Readers S, Millers T E. Introgression of salt-tolerance genes from Thinopyrum bessarabicum into wheat. New Phytologist, 1997, 137: 75-81.
[9]    Xu S S, Jin Y, Klindworth D L, Wang R R C, Cai X. Evaluation and characterization of seedling resistances to stem rust Ug99 races in wheat–alien species derivatives. Crop Science, 2009, 49: 2167-2175.
[10]   Mujeeb-Kazi A, William M D H M, Thinopyrum bessarabicum: Biochemical for the detection of genetic introgression with Triticum aestivum L. and cytological markers in its hybrid derivatives. Theoretical and Applied Genetics, 1993, 86: 365-370.
[11]   Mujeeb-Kazi A, William M D H M, Biochemical and molecular diagnostics of Thinopyrum bessarabicum chromosomes in Triticum aestivum germplasm. Theoretical and Applied Genetics, 1995, 90: 952-956.
[12]   Mujeeb-Kazi A, Kazi A G, Dundas I, Rasheed A, Ogbonnaya F, Kishii M, Bonnett D, Wang R R C, Xu S, Chen P, Mahmood T, Bux H, Farrakh S. Genetic diversity for wheat improvement as a conduit to food security. Advances inAgronomy, 2013, 122: 179-205.
[13]   King I P, Purdie K A, Rezanoor H N, Koebner R M D, Miller T E, Reader S M, Nicholson P. Characterization of Thinopyrum bessarabicum chromosome segments in wheat using random amplified polymorphic DNAs (RAPDs) and genomic in situ hybridization. Theoretical and Applied Genetics, 1993, 86: 895-900.
[14]   Forster B P, Miller T E, Law C N. Salt tolerance of two wheat- Agropyron-junceum disomic addition lines. Genome, 1988, 30: 559-564.
[15]   英加, 陈佩度, 刘大钧. 将Thinopyrum bessarabicumThinopyrum elongatum的种质导入普通小麦的研究. 西北植物学报, 2000, 20(3): 321-326.
Ying J, Chen P D, Liu D J. Studies on transfer germplasm from Thinopyrum bessarabicum and Thinopyrum elongatum in to common wheat. Acta Botanica Boreali Occidentalia Sinica, 2000, 20(3): 321-326. (in Chinese)
[16]   庄丽芳, 亓增军, 英加, 陈佩度, 刘大钧. 普通小麦-百萨偃麦草 (Thinopyrum bessarabicum)二体异附加系的选育与鉴定. 遗传学报, 2003, 30(10): 919-925.
Zhuang L F, Qi Z J, Ying J, Chen P D, Liu D J. Development and identification of a set of Triticum aestivum-Thinopyrum bessarabicum disomic alien addition lines. Acta Genetica Sinica, 2003, 30(10): 919-925. (in Chinese)
[17]   陈华锋, 钱保俐, 庄丽芳, 陈全战, 冯祎高, 裴自友, 亓增军, 陈佩度, 刘大钧. 普通小麦中国春-百萨偃麦草异染色体系的分子标记分析. 作物学报, 2007, 33(8): 1232-1239.
Chen H F, Qian B L, Zhuang L F, Chen Q Z, Feng Y G, Pei Z Y, Qi Z J, Chen P D, Liu D J. Molecular marker analysis on common wheat landrace Chinese Spring alien chromosome lines derived from Thinopyrum bessarabicum Löve. Acta Agronomica Sinica, 2007, 33(8): 1232-1239. (in Chinese)
[18]   Zhang J Y, Li X M, Wang R R C, Cortes A, Rosas V, Mujeeb-Kazi A. Molecular cytogenetic characterization of Eb-genome chromosomes in Thinopyrum bessarabicum disomic addition lines of bread wheat. Plant Science, 2002, 163: 167-174.
[19]   Wu H L, Chen D, Li J X, Yu B, Qiao X Y, Huang H L, He Y M. De novo characterization of leaf transcriptome using 454 sequencing and development of EST-SSR markers in tea(Camellia sinensis). Plant Molecular Biology Reporter, 2013, 31: 524-538.
[20]   Chung J W, Kim T S, Sundan S, Lee G A, Park J H, Cho G T, Lee H S, Lee J Y, Lee M C, Baek H J, Lee S Y. New cDNA-SSR markers in the narrow-leaved vetch (Vicia sativa subsp. nigra) using 454 pyrosequencing. Molecular Breeding, 2014, 33(3): 749-754.
[21]   Russell J R, Bayer M, Booth C, Cardle L, Hackett C A, Hedley P E, Jorgensen L, Morris J A, Brennan R M. Identification, utilisation and mapping of novel transcriptome-based markers from blackcurrant (Ribes nigrum). Plant Biology, 2011, 11: 147-158.
[22]   Iehisa J C M, Shimizu A, Sato K, Nishijima R, Sakaguchi K, Matsuda R, Nasuda S, Takumi S. Genome-wide marker development for the wheat D genome based on single nucleotide polymorphisms identified from transcripts in the wild wheat progenitor Aegilops tauschii. Theoretical and Applied Genetics, 2014, 127(2): 261-271.
[23]   Jia J Z, Zhao S C, Kong X Y, Li Y R, Zhao G Y, He W M, Appels R, Pfeifer M, Tao Y, Zhang X Y, Jing R L, Zhang C, Ma Y Z, Gao L F, Gao C, Spannagl M, Mayer K F X, Li D, Pan S K, Zheng F Y, Hu Q, Xia X C, Li J W, Liang Q S, Chen J, Wicker T, Gou C Y, Kuang H H, He G Y, Luo Y D, Keller B, Xia Q J, Lu P, Wang J Y, Zou H F, Zhang R Z, Xu J Y, Gao J L, Middleton C, Quan Z W, Liu G M, Wang J, Yang H M, Liu X, He Z H, Mao L, Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496(7443): 1-5.
[24]   Kumar S, Balyan H S, Gupta P K. Comparative DNA sequence analysis involving wheat, Brachypodium and rice genomes using mapped wheat ESTs. Triticeae Genomics and Genetics, 2012, 3(3): 25-37.
[25]   Sorrells M E, La Rota M, Bermudez-Kandianis C E, Greene R A, Kantety R, Munkvold J D, Miftahudin, Mahmoud A, Ma X, Gustafson P J, Qi L, Echalier B, Gill B S, Matthews D E, Lazo G R, Chao S, Anderson O D, Edwards H, Linkiewicz A M, Dubcovsky J, Akhunov E D, Dvorak J, Zhang D, Nguyen H T, Peng J, Lapitan N L V, Gonzalez-Hernandez J L, Anderson J A, Hossain K, Kalavacharla V, Kianian S F, Choi, D W, Close T J, Dilbirligi M, Gill K S, Steber C, Walker-Simmons M K, McGuire P E, Qualset C O. Comparative DNA sequence analysis of wheat and rice genomes. Genome Research, 2003, 13(8): 1818-1827.
[26]   徐磊. 小麦抗条锈病Yr26的分子标记开发[D]. 南京: 南京农业大学, 2011.
Xu L. Development of markers for wheat stripe rust resistance gene Yr26[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[27]   达瓦顿珠. 普通小麦-百萨偃麦草4J、5J异染色体系的选育与分子标记分析[D]. 南京: 南京农业大学, 2009.
Dawadondup. Development and molecular characterization of wheat-Thinopyrum bessarabicum Löve alien chromosome lines involving 4J and 5J[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)
[28]   谈丽君. 百萨偃麦草染色体1J和5J变异体的诱致与鉴定[D]. 南 京: 南京农业大学, 2011.
Tan L J. Development and identification of structural variations involving chromosome 1J and 5J of Th.bessarabicum Löve[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[29]   Hu J G, Vick B A. Target region amplification polymorphism: A novel marker technique for plant genotyping. Plant Molecular Biology Report, 2003, 21: 289-294.
[30]   Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001, 103: 455-461.
[31]   杜培. 普通小麦-百萨偃麦草染色体易位系的选育与效应分析[D]. 南京: 南京农业大学, 2010.
Du P. Development and identification of a Triticum aestivum- Thinopyrum bessarabicum chromosome translocation line and analysis on its genetic effect[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[32]   沈健. 普通小麦-百萨偃麦草异染色体系选育及分子细胞遗传研究[D]. 南京: 南京农业大学, 2011.
Shen J. Development and molecular cytogenetic characterization of wheat-Thinopyrum bessarabicum alien chromosome lines[D]. Nanjing: Nanjing Agricultural Univerisity, 2011. (in Chinese)
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[3] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[4] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[5] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[6] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[7] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[8] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[9] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[10] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[11] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[12] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[13] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[14] LIN Bing,CHEN YiQuan,ZHONG HuaiQin,YE XiuXian,FAN RongHui. Analysis of Key Genes About Flower Color Variation in Iris hollandica [J]. Scientia Agricultura Sinica, 2021, 54(12): 2644-2652.
[15] QIN QiuHong,HE XuJiang,JIANG WuJun,WANG ZiLong,ZENG ZhiJiang. The Capping Pheromone Contents and Putative Biosynthetic Pathways in Larvae of Honeybees Apis cernana [J]. Scientia Agricultura Sinica, 2021, 54(11): 2464-2475.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!