Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (3): 523-533.doi: 10.3864/j.issn.0578-1752.2015.03.12

• HORTICULTURE • Previous Articles     Next Articles

Pyramiding Disease Resistance Genes and Variety Improvement by Molecular Marker-Assisted Selection in Melon (Cucumis melon L.)

BI Yan-fei1, XU Bing-hua1, QIAN Chun-tao1, GUO Jing1, ZHANG Yong-bing2, YI Hong-ping2, CHEN Jin-feng1   

  1. 1State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095
    2Center of Hami Melon, Xinjiang Academy of Agricultural Sciences, Urumqi 830091
  • Received:2014-07-22 Online:2015-01-31 Published:2015-01-31

Abstract: 【Objective】Gummy stem blight (GSB) is caused by Didymella bryoniae and is a serious fungal disease of melon (Cucumis melon L.). The resistance of melon varieties carrying a single resistance gene is not enough to the disease because of the isolates variation of Didymella bryoniae. Therefore, this study aims to develop a molecular marker-assisted selection system and provide an important intermediate materials for melon disease-resistance breeding. 【Method】Firstly, the single resistant sources PI140471, PI157082, PI511890, PI482398 and PI420145 were used to obtain polymerization resistant sources (082-471, 082-890, 082-398, 145-471, 145-082, 145-890, 145-398 and 890-398). Secondly, three different gradient spores vaccination identification (5×105 spores/mL, 5×107 spores/mL and 5×109 spores/mL) was employed to distinguish the resistance of F1 plant of eight different polymerization resistant sources. The gene combinations of 145-471 and 145-398 with their resistance significantly improved were screened by inoculation identification results of spring and autumn. Single resistant sources PI140471, PI482398 and PI420145 were used as the donor parents with the gummy stem blight resistance genes Gsb-1 Gsb-4 and Gsb-6, respectively. Commercial melon cultivar Baipicui was used as the receipt parent to cross and backcross with the donor parents. Marker assisted selection (MAS) and gradient spores vaccination identification (5×105 spores/mL, 5×107 spores/mL and 5×109 spores/mL) were used in each backcross and self-cross progeny. 【Result】The single resistant sources showed lower resistance than polymerization individuals and showed selective resistance to the different gummy stem blight spore concentrations (5×105 spores/mL, 5×107 spores/mL and 5×109 spores/mL). The detection results of molecular markers showed that all the individuals of 145-471 (or 145-398) F7 and BC5F4 generation had two resistance genesof Gsb-1 and Gsb-6 (or Gsb-4 and Gsb-6). The polymorphism of molecular markers was different among the parents. The PCR amplification of SSR marker CMCT505 could augment one specific fragments of 189 bp in single resistant source PI140471. The PCR amplification of SSR marker CMTA170a could augment one specific fragments of 121 bp in single resistant source PI482398. A 1 800 bp specific fragment was obtained with SCAR marker SGSB1800 in resistant source PI420145. The polymerization individual 145-471 could be amplified two fragments of 189 bp and 1 800 bp by SSR marker CMCT505 and SCAR marker SGSB1800. The polymerization individual 145-398 could be amplified two fragments of 121 bp and  1 800 bp by SSR marker CMTA170a and SCAR marker SGSB1800. At F7 generation, the pyramiding lines with homozygosity at both gene loci were obtained. The polymerization individuals showed higher resistance than single resistant sources PI140471, PI482398 and PI420145. The individuals were resistant to melon gummy stem blight, which was accordant to the expected result of molecular detection. Improved Baipicui BC5F4 generation showed high resistance to melon gummy stem blight and had no significant differences in fruit weight, fruit shape index, fruit crispness, flesh texture, flesh thickness and soluble solids content compared with the Baipicui. A molecular marker-assisted selection system was developed and thus providing important intermediate materials for melon disease-resistance breeding. 【Conclusion】The results of disease resistance evaluation indicated that the molecular markers developed in the study were efficient in selecting three resistance genes by MAS. The molecular marker-assisted selection system developed in this study was efficient for pyramiding multiple resistant genes. The resistance improved materials of Baipicui would be used in breeding and further resistance gene pyramiding.

Key words: melon (Cucumis melon L.), marker-assisted selection, disease resistance, variety improvement

[1]    Keinath A P, Farnham M W, Zitter T A. Morphological, pathological, and genetic differentiation of Didymella bryoniae and Phoma spp. isolated from cucurbits. Phytopathology, 1995, 85(3): 364-369.
[2]    吴明珠, 伊鸿平, 冯炯鑫, 艾尔肯, 张永兵. 哈密瓜南移东进生态育种与有机生态型无土栽培技术研究. 中国工程科学, 2000, 2(8): 83-88.
Wu M Z, Yi H P, Feng J X, Ai E K, Zhang Y B. Ecobreeding of hamimelon and soilless cultivation of organic ecotype. Engineering Science, 2000, 2(8): 83-88. (in Chinese)
[3]    陈秀蓉, 魏永良, 张建文. 甜瓜蔓枯病菌及其生物学特性的研究. 甘肃农业大学学报, 1993, 28(1): 56-61.
Chen X R, Wei Y L, Zhang J W. Studies on the muskmelon blaek rot fungus and its biologieal charaeters. Journal of Gansu Agricultural University, 1993, 28(1): 56-61. (in Chinese)
[4]    Tsutsumi C Y, Silva N. Screening of melon populations for resistance to Didymella bryonia. Braz Arch Biological Technology, 2004, 47(2): 171-177.
[5]    邹明学, 许勇, 张海英, 郭绍贵, 宫国义. 葫芦科瓜类作物分子标记辅助育种研究进展. 生物技术通报, 2007(4): 72-78.
Zou M X, Xu Y, Zhang H Y, Guo S G, Gong G Y. Progress in molecular marker-assisted breeding of cucurbitaceae. Biotechnology Bulletin, 2007(4): 72-78. (in Chinese)
[6]    Pang X, Zhou X H, Wan H J, Chen J F. QTL Mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and cucumis hystrix. Journal of Phytopathology, 2013, 161(8): 536-543.
[7]    Kennard W C, Poetter K, Dijkuizen A. Linkages among RFLP, RAPD, isozyme, disease-resistance, and morphological markersin narrow and wide crosses of cucumber. Theoretical and Applied Genetics, 1994, 89: 42-48.
[8]    张桂华, 杜胜利, 王鸣, 马德华. 与黄瓜抗白粉病相关基因连锁的AFLP标记的获得. 园艺学报, 2004, 31(2): 189-192.
Zhang G H, Du S L, Wang M, Ma D H. AFLP markers of cucumber powdery mildew resistance-related gene. Acta Horticultura Sinica, 2004, 31(2): 189-192. (in Chinese)
[9]    Horejsi T, Staub J, Thomas C. Linkage of random amplified polymorphic DNA marker to downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica, 2000, 115: 105-113.
[10]   王亚娟. 黄瓜(Cucumis sativus L)枯萎病抗性相关基因的分子标记研究[D]. 陕西杨凌: 西北农林科技大学, 2005.
Wang Y J. Research of the molecular markers linked to the resisitance genes to Cucumis sativus L. Yangling, Shaanxi: North West Agriculture and Forestry University, 2005. (in Chinese)
[11]   王惠哲, 李淑菊, 管炜. 与黄瓜抗黑星病相关基因紧密连锁的SSR标记. 分子植物育种, 2009, 7(3): 550-554.
Wang H Z, Li S J, Guan W. SSR marker linked to cucumber scab resistance-related gene. Molecular Plant Breeding, 2009, 7(3): 550-554. (in Chinese)
[12]   马少芹, 许勇, 张海英, 宫国义, 沈火林. 西瓜抗小西葫芦黄花叶病毒基因的连锁分子标记研究. 植物病理学报, 2006, 36(1): 68-73.
Ma S Q, Xu Y, Zhang H Y, Gong G Y, Shen H L. Identification of the molecular markers linked to the resisitance gene to Zucchini yellow mosaic virus Chinese strain in watermelon. Acta Phytopathologica Sinica, 2006, 36(1): 68-73. (in Chinese)
[13]   Hawkins L K, Dane F, Kubisiak T L, Rhodes B B, Jarret R L. Linkage mapping in a watermelon population segergating for fusarium wilt resistance. Journal of the American Society for Horticultural Science, 2001, 126(3): 344-350.
[14]   Morales M, Luis-Arteaga M, Alvarez J M, Dolcet-Sanjuán R, Monfort A, Garcia-Mas J. Marker saturation of the region flanking the gene NSV conferring resistance to the melon necrotic spot carmovirus (MNSV) in melon. Journal of the American Society for Horticultural Science, 2002, 127: 540-544.
[15]   Brotman Y, Silberstein L, Kovalski I, Perin C, Dogimont C, Pitrat M, Klingler J, Thompson A, Perl-Treves R. Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance. Theoretical and Applied Genetics, 2002, 104: 1055-1063.
[16]   王贤磊, 李群, 方勇, 高小明, 杨艳, 李冠. 单核苷酸多态性与甜瓜抗枯萎病分子育种研究. 生物技术, 2007, 17(4): 31-34.
Wang X L, Li Q, Fang Y, Gao X M, Yang Y, Li G. Study of single nucleotide polymorphism and molecular breeding of melon wilt disease resistance. Biotechnology, 2007, 17(4): 31-34. (in Chinese)
[17]   Teixeira A P M, Baeerto F A S, Camargo L E A. An AFLP marker linked to the Pm-1 gene that confers resistance to podos phaera xanthii race 1 in cucumismelo. Genetics and Molecular Biology, 2008, 31(2): 547-550.
[18]   Teixeira A P M, Camargo L E A. A molecularmarker linked to the prv 1 gene that confers resistance to papaya ringspot virus-type W in melon. Plant Breeding, 2006, 125: 187-190.
[19]   刘龙洲, 翟文强, 陈亚丽, 陈幼源, 朱为民. 甜瓜蔓枯病抗性QTL定位的研究. 果树学报, 2013, 30(5): 748-752.
Liu L Z, Zhai W Q, Chen Y L, Chen Y Y, Zhu W M. QTL molecular marker location of gummy stem blight resistance in melon (Cucumis melo). Journal of Fruit Science, 2013, 30(5): 748-752. (in Chinese)
[20]   Frantz J D, Jahn M M. Five independent loci each control monogenic resistance to gummy stem blight in melon (Cucumis melo L.) . Theoretical and Applied Genetics, 2004, 108(6): 1033-1038.
[21]   Joseph N W, Zhou X H, Chen J F. Identification of amplified fragment length polymorphism markers linked to gummy stem blight (Didymella bryoniae) resistance in melon (Cucumis melo L.) PI 420145. HortScience, 2009, 44(1): 32-34.
[22]   刘文睿, 张永兵, 周晓慧, 陈劲枫. 甜瓜抗蔓枯病基因Gsb-1的分子标记及其与抗源PI420145中抗病基因的关系. 中国瓜菜, 2009(5): 1-4.
Liu W R, Zhang Y B, Zhou X H, Chen J F. SSR marker linked to gummy stem blight resistance gene Gsb-1 in melon and its allelism with resistance gene from PI 420145. China Cucurbits and Vegetable, 2009(5): 1-4. (in Chinese)
[23]   张永兵, 陈劲枫, 伊鸿平, 钱春桃, 吴明珠. 甜瓜抗蔓枯病基因Gsb-2的ISSR分子标记. 果树学报, 2011, 28(2): 296-300.
Zhang Y B, Chen J F, Yi H P, Qian C T, Wu M Z. ISSR marker linked to gene Gsb-2 resistant to gummy stem blight in melon (Cucumis melo). Journal of Fruit Science, 2011, 28(2): 296-300. (in Chinese)
[24]   张学军, 张永兵, 张龑, 王登明, 伊鸿平. 甜瓜抗蔓枯病基因Gsb-3的ISSR 分子标记. 西北植物学报, 2013, 33(2): 261-265.
Zhang X J, Zhang Y B, Zhang Y, Wang D M, Yi H P. ISSR marker linked to Gsb-3 resistance of gummy stem blight in melon. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(2): 261-265. (in Chinese)
[25]   王红英, 钱春桃, 娄丽娜, 娄群峰, 张永兵, 伊鸿平, 吴明珠, 陈劲枫. 甜瓜抗蔓枯病基因Gsb-4的分子标记. 园艺学报, 2012, 39(3): 574-580.
Wang H Y, Qian C T, Lou L N, Lou Q F, Zhang Y B, Yi H P, Wu M Z, Chen J F. A SSR marker linked to Gsb-4 loci resistance to gummy stem blight in melon. Acta Horticulturae Sinica, 2012, 39(3): 574-580. (in Chinese)
[26]   Zhang Y P, Molly K, Anagnostou K. Screening melon for resistance to gummy stem blight in the greenhouse and field. HortScience, 1997, 32(1) :117-121.
[27]   Wolukou T N, Zhou X H, Li Y, Zhang Y B, Chen J F. Resistance to gummy stem blight in melon (Cucumis melo L.) germplasm and inheritance of resistance from plant introductions 157076, 420145, and 323498. HortScience, 2007, 42(2): 215-221.
[28]   Keinath A P, Holmes G J, Everts K L, Egel D S, Langstonjr D. Evaluation of combinations of chlorothalonil with azoxystrobin, harpin, and disease forecasting for control of downy mildew and gummy stem blight on melon. Crop Protection, 2007, 26: 83-88.
[29]   许勇, 张海英, 康国斌, 王永健, 陈杭. 西瓜抗枯萎病育种分子标记辅助选择的研究. 遗传学报, 2000, 27(2): 151-157.
Xu Y, Zhang H Y, Kang G B, Wang Y J, Chen H. Studies of molecular marker-assisted-selection for resistance to fusarium wilt in watermelon (Citrullus lanatus) breeding. Acta Genetica Sinica, 2000, 27(2): 151-157. (in Chinese)
[30]   Matsumoto Y, Watanabe N, Kuboyama T. Cross-species transferability of 86 cucumber (Cucumis sativus L.) microsatellite markers to gherkin (C. anguria L). Scientia Horticulturae, 2012, 136(4): 110-114.
[31]   毕研飞, 徐兵划, 钱春桃, 陈劲枫. 甜瓜抗蔓枯病育种研究进展. 中国蔬菜, 2013(20): 10-16.
Bi Y F, Xu B H, Qian C T, Chen J F. Research progress in melon resistance breeding to gummy stem blight. China Vegetables, 2013(20): 10-16. (in Chinese)
[32]   Roger S D, Bendich A J. Extraction of DMA from plant tissue. Plant Molecular Biology, 1988, 6: 1-10.
[33]   杨光华, 范荣, 杨小锋, 侯军亮, 袁士臣, 曹明, 王学林, 李劲松. 甜瓜果实颜色3个质量性状基因的定位. 园艺学报, 2014, 41(5): 898-906.
Yang G H, Fan R, Yang X F, Hou J L, Yuan S C, Cao M, Wang X L, Li J S. Construction of a highly dense genetic map using SNP and mapping of three qualitative traits in Cucumis melo. Acta Horticulturae Sinica, 2014, 41(5): 898-906. (in Chinese)
[34]   Esteras C, Formisano G, Roig C, Díaz A, Blanca J, Garcia-Mas J. SNP genotyping in melons: Genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics, 2013, 126(5): 1285-1303. 
[35]   Eduardo I, Arús P, Monforte A J, Obando J, Fernandez-Trujillo J P, Martinez J A, Alarcon A L, Alvarez J M, Van Der Knaap E. Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. Journal of the American Society for Horticultural Science, 2007, 132(1): 80-89.
[36]   Cuevas H E, Staub J E, Simon P W, Zalapa J E. A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). Theoretical and Applied Genetics, 2009, 119(4): 741-756.
[37]   朱明涛, 孙亚林, 郑莎, 张晓黎, 王涛涛, 叶志彪, 李汉霞. 分子标记辅助聚合番茄抗病基因育种. 园艺学报, 2010, 37(9): 1416-1422.
Zhu M T, Sun Y L, Zheng S, Zhang X L, Wang T T, Ye Z B, Li H X. Pyramiding disease resistance genes by molecular marker-assisted selection in tomato. Acta Horticulturae Sinica, 2010, 37(9): 1416-1422. (in Chinese)
[38]   Fahad S, Nie L, Khan F A, Chen Y T, Hussain S, Wu C, Xiong D L. Disease resistance in rice and the role of molecular breeding in protecting rice crops against diseases. Biotechnology Letters, 2014, 36(7): 1407-1420.
[39]   Joobeur T, King J J, Nolin S J , Thomas C E, Dean R A. The fusarium wilt resistance locus Fom-2 of melon contains a single resistace gene with complex features. Plant Journal, 2004, 39: 283-297.
[40]   Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z J. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biology, 2011, 11(6): 111-124.
[41]   Palomares-Rius F J, Viruel M A, Yuste-Lisbona F J, López-Sesé A I. Simple sequence repeat markers linked to QTL for resistance to watermelon mosaic virus in melon. Theoretical and Applied Genetics, 2011, 123: 1207-1214.
[42]   Pang X, Zhou X H, Wan H J, Chen J F. QTL mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. Journal of Phytopathology, 2013, 161(8): 536-543.
[43]   Zalapa J E, Staub J E, McCreight J D, Chung S M, Cuevas H. Detection of QTL for yield-related traits using re-combinant inbred lines derived from exotic and elite US western shipping melon germplasm. Theoretical and Applied Genetics, 2007, 114(7): 1185-1201.
[44]   徐美红, 许顺芝, 李秀秀, 吕敬刚, 彭冬秀, 王志民. 甜瓜雌雄异花同株近等基因系的构建及近等性评价. 分子植物育种, 2008, 6(2): 302-308.
Xu M H, Xu S Z, Li X X, Lv J G, Peng D X, Wang Z M. Development of monoecious NILs and assessment of the near-isogenic level in melon. Molecular Plant Breeding, 2008, 6(2): 302-308. (in Chinese)
[45]   Paris H S, Yonash N, Portnoy V, Mozes-Daube N, Portnoy V, Katzir N. Assessment of genetic relationships in Cucurbita pepo (cucurbitaceae) using DNA markers. Theoretical and Applied Genetics, 2002, 106(6): 971-978.
[46] Levi A, Thomas C E, Newman M, Reddy O U K, Zhang X, Xu Y. ISSR and AFLP markers differ among American watermelon cultivars with limited genetic diversity. Journal of the American Society for Horticultural Science, 2004, 129(4): 553-558.
[1] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[2] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[3] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[4] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[5] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[6] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[7] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[8] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[9] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[10] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[11] MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307.
[12] ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases [J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522.
[13] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[14] Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU. Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization [J]. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308.
[15] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!