Scientia Agricultura Sinica

• AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Crop Roots Configuration and Visualization: A Review

WEN Wei-liang1,2, GUO Xin-yu2, ZHAO Chun-jiang2, WANG Chuan-yu2, XIAO Bo-xiang2   

  1. 1 College of Computer Science, Beijing University of Technology, Beijing 100124
    2 Beijing Research Center for Information Technology in Agriculture, Beijing 100097
  • Received:2014-01-27 Online:2015-01-31 Published:2015-01-31

Abstract: As an important organ of absorbing water and nutrients for crops, root system architecture (RSA) has become a bottleneck in-depth study of crop roots due to the observing obstacles of soil. Three dimensional and visualization are important methods for studying and recognizing the morphological and structural traits of plants. In the aspect of crop root phenotype, these methods have a significance for characterizing the growth appearance of roots and for the influence of water, nutrients and other substances in the soil on RSA. In this paper, from the three dimensional perspective, the research progresses in detecting methods, three dimensional reconstruction and visualization of RSA in recent years were reviewed. Destructive and in situ detection methods of RSA were introduced. Destructive detecting methods mainly include (i) direct mining, (ii) protective soil block mining and cleaning, (iii) root scanning and image analysis, etc. These destructive methods have great advantages in obtaining global or local topology and extracting the plane geometric parameters. Meanwhile, in situ method mainly include six classes: (i) installation of root observation windows in field, (ii) ground penetrating radar, (iii) cultivation in controllable environment, (iv) CCD camera imaging, (v) 3D digitizing and (vi) X-ray computed tomography (CT), etc. These in situ methods retained the distribution information of RSA in space. However, most of the in situ detecting methods are only available for young or grown in controllable environment roots. Because a great deal of the detected data of RSA exist in the form of two-dimensional image, studies on extraction and analysis of plane geometry RSA parameters from two dimensional images were introduced as well, including root identification and parameter extraction algorithms and manual extraction software. Analysis showed that, the crop root data acquisition still exist some problems, such as time-consuming and laborious, redundant limitations, low integrity, difficult to integrate of each other, etc. Therefore, detecting and analyzing morphological traits of roots will still be the focus of RSA research. On the basis of RSA detecting technology, 3D modeling and visualization methods of RSA were reviewed on the aspects of 3D static modeling and dynamic growth simulation. 3D static modeling of RSA includes two kinds of methods: 3D modeling based on simulating algorithms and 3D reconstruction based on in situ detecting. Combining the computer simulation algorithms and understanding of RSA, the 3D modeling methods using simulating algorithms construct virtual roots with high morphological similarity of the real one. In contrast, 3D reconstruction based on in situ detection, which mainly includes XCT and 3D digital methods, could reflect the actual morphological structure of the RSA. Finally, the paper prospected the research on 3D reconstruction of crop roots under the condition of data missing. It was considered that 3D measurement and analysis of root topology could be realized using current technical means, while the 3D reconstruction of spatial distribution of RSA was difficult, especially in the premise of in situ measurement of crop roots in field. In addition, current 3D root data mainly have the data missing and low integration problems, so it is necessary to introduce the statistical methods like small sample theory and data fusion method into the research of 3D reconstruction of crop root to achieve a better reconstruction strategy by using multiple RSA data effectively in the premise of data missing.

Key words: crop, root system architecture, detecting method, 3D reconstruction, visualization

[1]    Lynch J P, Brown K M. New roots for agriculture: Exploiting the  root phenome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1595): 1598-1604.
[2]    Smith S, De Smet I. Root system architecture: Insights from Arabidopsis and cereal crops. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1595): 1441-1452.
[3]    de Dorlodot S, Forster B, Pag E S L I C, Price A, Tuberosa R,   Draye X. Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 2007, 12(10): 474-481.
[4]    赵春江, 陆声链, 郭新宇, 肖伯祥, 温维亮. 数字植物及其技术体系探讨. 中国农业科学, 2010, 43(10): 2023-2030.
Zhao C J, Lu S L, Guo X Y, Xiao B X, Wen W L. Exploration of digital plant and its technology system. Scientia Agricultura Sinica, 2010, 43(10): 2023-2030. (in Chinese)
[5]    Lynch J. Root architecture and plant productivity. Plant Physiology, 1995, 109(1): 7-13.
[6]    毛齐正, 杨喜田, 苗蕾. 植物根系构型的生态功能及其影响因素. 河南科学, 2008, 26(2): 172-176.
Mao Q Z, Yang X T, Miao L. The ecological roles and influencing factors of plant root architecture. Henan Science, 2008, 26(2): 172-176. (in Chinese)
[7]    严小龙, 张福锁. 植物营养遗传学. 北京: 中国农业出版社, 1997.
Yan X L, Zhang F S. Genetics of Plant Nutrition. Beijing: Chinese Agriculture Press, 1997. (in Chinese)
[8]    严小龙, 廖红, 戈振扬, 罗锡文. 植物根构型特性与磷吸收效率. 植物学通报, 2000, 17(6): 511-519.
Yan X L, Liao H, Ge Z Y, Luo X W.Root architectural characteristics and phosphorus acquisition efficiency in plants. Chinese Bulletin of Botany, 2000, 17(6): 511-519. (in Chinese)
[9]    Neumann G, George T S, Plassard C. Strategies and methods for studying the rhizosphere-the plant science toolbox. Plant Soil, 2009, 321: 431-456.
[10]   Trachsel S, Kaeppler S, Brown K, Lynch J. Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant and Soil, 2011, 341(1): 75-87.
[11]   管建慧, 郭新宇, 王纪华, 刘克礼, 郭晓东. 玉米不同部位根系生长发育规律的研究. 玉米科学, 2007, 15(6): 82-85, 88.
Guan J H, Guo X Y, Wang J H, Liu K L, Guo X D. Study on growth and development rule of different parts of maize root. Journal of Maize Sciences, 2007, 15(6): 82-85, 88. (in Chinese)
[12]   Wu J, Guo Y. An integrated method for quantifying root architecture of field-grown maize. Annals of Botany, 2014, 114: 841-851.
[13]   Hawkins H, George E. Effect of plant nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiologia Plantarum, 1999, 105(4): 694-700.
[14]   Majdi H. Root sampling methods - applications and limitations of the minirhizotron technique. Plant and Soil, 1996, 185(2): 255-258.
[15]   廖荣伟, 刘晶淼, 安顺清, 牛俊丽, 梁宏, 任三学, 乐章燕, 曹玉静, 李文静. 基于微根管技术的玉米根系生长监测. 农业工程学报, 2010, 26(10): 156-161.
Liao R W, Liu J M, An S Q, Niu J L, Liang H, Ren S X, Le Z Y, Cao Y J, Li W J. Monitor of corn root growth in soil based on minirhizotron technique. Transactions of the CSAE, 2010, 26(10): 156-161. (in Chinese)
[16]   舒洪岚. 探地雷达在植物根系研究中的应用. 江西林业科技, 2007(5): 32-33.
Shu H L. Application of ground penetrating radar in studying plant roots. Jiangxi Forestry Science and Technology, 2007(5): 32-33. (in Chinese)
[17]   崔喜红, 陈晋, 关琳琳. 探地雷达技术在植物根系探测研究中的应用. 地球科学进展, 2009, 24(6): 606-611.
Cui X H, Chen J, Guan L L. The application of ground penetrating radar to plant root system detection. Advances in Earth Science, 2009, 24(6): 606-611. (in Chinese)
[18]   Danjon F, Reubens B. Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant and Soil, 2008, 303(1): 1-34.
[19]   Iyer-Pascuzzi A S, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz J S, Benfey P N. Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiology, 2010, 152: 1148-1157.
[20]   Fang S, Yan X, Liao H. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop. The Plant Journal, 2009, 60: 1096-1108.
[21]   Montgomery K, Heyenga G. Tomography for 3D acquisition of plant root systems//Proceedings of SPIE. San Jose: The International Society for Optical Engineering, 1998: 102-104.
[22]   朱同林, 方素琴, 李志垣, 刘玉涛, 廖红, 严小龙. 基于图像重建的根系三维构型定量分析及其在大豆磷吸收研究中的应用. 科学通报, 2006, 51(16): 1885-1893.
Zhu T L, Fang S Q, Li Z Y, Liu Y T, Liao H, Yan X L. Quantitative analysis of three dimensional root system architecture based on image reconstruction and it’s application on phosphorus absorption of soybean. Chinese Science Bulletin, 2006, 51(16): 1885-1893. (in Chinese)
[23]   Wu J, Yang B, Guo Y. A combined method for quantifying 3D   root architecture of field-grown maize//Proceedings of the 7th International Conference on Functional-Structural Plant Models. Soariselkä Finland, 2013: 39-41.
[24]   Gregory P J, Hutchison D J, Read D B, Jenneson P M, Gilboy W B, Morton E J. Non-invasive imaging of roots with high resolution X-ray micro-tomography. Plant and Soil, 2003, 255(1): 351.
[25]   Di Iorio A, Lasserre B, Scippa G S, Chiatante D. Root system architecture of quercus pubescens trees growing on different sloping conditions. Annals of Botany, 2005, 95(2): 351-361.
[26]   罗锡文, 周学成, 严小龙, 罗良平, 向子云. 基于XCT技术的植物根系原位形态可视化研究. 农业机械学报, 2004, 35(2): 104-106, 133.
Luo X W, Zhou X C, Yan X L, Luo L P, Xiang Z Y. Visualization  of plant root morphology in situ based on X-ray CT imaging technology. Transactions of the CSAM, 2004, 35(2): 104-106,133. (in Chinese)
[27]   Schulz H, Postma J A, van Dusschoten D, Scharr H, Behnke S. Plant root system analysis from MRI images, computer vision, imaging and computer graphics. Theory and Application, 2013(359): 411-425.
[28]   Stingaciu L, Schulz H, Pohlmeier A, Behnke S, Zilken H, Javaux M, Vereecken H. In situ root system architecture extraction from magnetic resonance imaging for water uptake modeling. Vadose Zone Journal, 2013, 12(1): 1-9.
[29]   李克新, 宋文龙, 朱良宽. 植物根系构型原位观测识别技术研究进展. 生态学杂志, 2011, 30(9): 2066-2071.
Li K X, Song W L, Zhu L K. Observation and measurement of plant root architecture in situ: A review. Chinese Journal of Ecology, 2011, 30(9): 2066-2071. (in Chinese)
[30]   Wells D M, French A P, Naeem A, Ishaq O, Traini R, Hijazi H, Bennett M J, Pridmore T P. Recovering the dynamics of root growth and development using novel image acquisition and analysis methods. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1595): 1517-1524.
[31]   刘九庆, 汤晓华, 陈健, 谢永华, 蒋云飞. 基于线阵CCD植物微根系图像监测分析系统. 林业科学, 2005, 41(3): 121-124.
Liu J Q, Tang X H, Chen J, Xie Y H, Jiang Y F. The plant fine roots image monitor analysis system based on linear CCD. Scientia Silvae Sinicae, 2005, 41(3): 121-124. (in Chinese)
[32]   Kimura K, Kikuchi S, Yamasaki S. Accurate root length measurement by image analysis. Plant and Soil, 1999, 216(1): 117-127.
[33]   Vamerali T, Ganis A, Bona S, Mosca G. An approach to minirhizotron root image analysis. Plant and Soil, 1999, 217(1): 183-193.
[34]   Erz G, Posch S. Root detection by hierarchical seed expansion// Proceedings of the International Conference on Computer as a Tool (EROCON 2005). Belgrade, 2005: 963-966.
[35]   Banerjee K, Jasrai Y T, Jain N K. An accessible and accurate image analysis for root length and leaf area estimation A: case application to azadirachta indica seedlings. American-Eurasian Journal of Agriculture & Environment, 2012, 12(1): 64-76.
[36]   Hoover A, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging, 2000, 19: 203-210.
[37]   Zeng G, Birchfield S, Wells C. Detecting and measuring fine    roots in minirhizotron images using matched filtering and local entropy thresholding. Machine Vision and Applications, 2006, 17(4): 265-278.
[38]   Zeng G, Birchfield S T, Wells C E. Automatic discrimination of fine roots in minirhizotron images. New Phytologist, 2008, 177(2): 549-557.
[39]   Zeng G, Birchfield S, Wells C. Rapid automated detection of roots in minirhizotron images. Machine Vision and Applications, 2010, 21(3): 309-317.
[40]   Apte A. Detecting piecewise linear networks using reversible jump markov chain Monte Carlo[D]. Clemson, Clemson University, 2010.
[41]   Stefanelli D, Fridman Y, Perry R L. DigiRoot™: New software for root studies. European Journal of Horticultural Science, 2009, 74(4): 169-174.
[42]   Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison R J, Blatt M R, Amtmann A A. EZ-Rhizo integrated software for the fast and accurate measurement of root system architecture. The Plant Journal, 2009, 57: 945-956.
[43]   Le Bot J, Serra V, Fabre J, Draye X, Adamowicz S, Pagès L. DART: a software to analyse root system architecture and development from captured images. Plant and Soil, 2010, 326(1-2): 261-273.
[44]   梁泉, 廖红, 严小龙. 植物根构型的定量分析. 植物学通报, 2007, 24(6): 695-702.
Liang Q, Liao H, Yan X L. Quantitative analysis of plant root architecture. Chinese Bulletin of Botany, 2007, 24(6): 695-702. (in Chinese)
[45]   张吴平, 李保国. 棉花根系生长发育的虚拟研究. 系统仿真学报, 2006, 18(1): 283-286.
Zhang W P, Li B G. Three-dimensional model simulating development and growth of cotton root system. Journal of System Simulation, 2006, 18(s1): 283-286. (in Chinese)
[46]   张吴平, 郭焱, 李保国. 小麦苗期根系三维生长动态模型的建立与应用. 中国农业科学, 2006, 39(11): 2261-2269.
Zhang W P, Guo Y, Li B G. Development and application of three-dimensional growth model of root system in wheat seedling. Scientia Agricultura Sinica, 2006, 39(11): 2261-2269. (in Chinese)
[47]   邓旭阳, 周淑秋, 郭新宇, 赵春江, 王纪华. 玉米根系几何造型研究. 工程图学学报, 2004, 25(4): 62-66.
Deng X Y, Zhou S Q, Guo X Y, Zhao C J, Wang J H. Study on the geometry modeling for corn root system. Journal of Engineering Graphics, 2004, 25(4): 62-66. (in Chinese)
[48]   Han L, Gresshoff P M, Hanan J. A functional-structural modeling approach to autoregulation of nodulation. Annals of Botany, 2011, 107(5): 855-863.
[49]   Pagès L, Vercambre G, Drouet J, Lecompte F, Collet C, Le Bot J. Root type: a generic model to depict and analyse the root system architecture. Plant and Soil, 2004, 258(1): 103-119.
[50]   Pagès L, Moreau D, Sarlikioti V, Boukcim H, Nguyen C. ArchiSimple: a parsimonious model of the root system architecture//2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. Shanghai, China. 2012: 297-303.
[51]   Lynch J P, Nielsen K L, Davis R D, Jablokow A G. SimRoot: Modelling and visualization of root systems. Plant and Soil, 1997, 188(1): 139.
[52]   徐其军, 汤亮, 顾东祥, 姜海燕, 曹卫星, 朱艳. 基于形态参数的水稻根系三维建模及可视化. 农业工程学报, 2010, 26(10): 188-194.
Xu Q J, Tang L, Gu D X, Jiang H Y, Cao W X, Zhu Y. Architectural parameter-based three dimensional modeling and visulization of rice roots. Transactions of the CSAE, 2010, 26(10): 188-194. (in Chinese)
[53]   谈峰, 汤亮, 胡军成, 姜海燕, 曹卫星, 朱艳. 小麦根系三维形态建模及可视化. 应用生态学报, 2011, 22(1): 137-143.
Tan F, Tang L, Hu J C, Jiang H Y, Cao W X, Zhu Y. Three-dimensional morphological modeling and visualization of wheat root system. Chinese Journal of Applied Ecology, 2011, 22(1): 137-143. (in Chinese)
[54]   赵春江, 王功明, 郭新宇, 陈立平, 王纪华. 基于交互式骨架模型的玉米根系三维可视化研究. 农业工程学报, 2007, 23(9): 1-6.
Zhao C J, Wang G M, Guo X Y, Chen L P, Wang J H. 3D visualization of corn root system based on interactive framework model. Transactions of the CSAE, 2007, 23(9): 1-6. (in Chinese)
[55]   Flavel R J, Guppy C N, Tighe M, Watt M, McNeill A, Young I M. Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography. Journal of Experimental Botany, 2012: 63(7): 1-9.
[56]   Mairhofer S, Zappala S, Tracy S R, Sturrock C, Bennett M, Mooney S J, Pridmore T. RooTrak: automated recovery of three-dimensional plant root architecture in soil from x-ray microcomputed tomography images using visual tracking. Plant Physiology, 2012, 158(2): 561-569.
[57]   Zhu J, Ingram P A, Benfey P N, Elich T. From lab to field, new approaches to phenotyping root system architecture. Current Opinion in Plant Biology, 2011, 14(3): 310-317.
[58]   Mooney S, Pridmore T, Helliwell J, Bennett M. Developing X-ray Computed Tomography to non-invasively image 3-D root systems architecture in soil. Plant and Soil, 2012, 352(1): 1-22.
[59]   Pierret A, Capowiezb Y, Morana C J, Kretzschmarb A. X-ray computed tomography to quantify tree rooting spatial distributions. Geoderma, 1999, 90(3/4): 307-326.
[60]   Kaestner A, Schneebeli M, Grafc F. Visualising three dimensional root networks using computed tomography. Geoderma, 2006, 136(1/2): 459-469.
[61]   向子云, 罗锡文, 周学成, 严小龙, 罗良平, 赵相胜. 多层螺旋CT三维成像技术观测植物根系的实验研究. CT理论与应用研究, 2006, 15(3): 1-5.
Xiang Z Y, Luo X W, Zhou X C, Yan X L, Luo L P, Zhao X S. CT theory and applications experimental study on observation of original shape of crop root system with multi helical CT technology. CT Theory and Applications, 2006, 15(3): 1-5. (in Chinese)
[62]   周学成, 罗锡文, 严小龙, 周荷琴. 基于遗传算法的原位根系CT图像的模糊阈值分割. 中国图象图形学报A, 2009, 14(4): 681-687.
Zhou X C, Luo X W, Yan X L, Zhou H Q. A Fuzzy Thresholding segmentation for plant root CT images based on genetic algorithm. Journal of Image and Graphics, 2009, 14(4): 681-687. (in Chinese)
[63]   钟南, 罗锡文, 严小龙, 廖红. 植物根系生长的三维可视化模拟. 华中农业大学学报, 2005, 24(5): 516-518.
Zhong N, Luo X W, Yan X L, Liao H. Visualized modeling system of three-dimensional roots system growth. Journal of Huazhong Agricultural University, 2005, 24(5): 516-518. (in Chinese)
[64]   张吴平, 刘建宁, 李保国. 结构与功能反馈机制下根系生长向性模拟. 农业工程学报, 2009, 25(2): 110-117.
Zhang W P, Liu J N, Li B G. Simulation of tropisms of three tropisms of root system growth based on feedbacks between functions and structures. Transactions of the CSAE, 2009, 25(s2): 110-117. (in Chinese)
[65]   Bonneu A, Dumont Y, Rey H, Jourdan C, Fourcaud T. A minimal continuous model for simulating growth and development of plant root systems. Plant and Soil, 2012, 354(1-2): 211-227.
[66]   Casson S A, Lindsey K. Genes and signaling in root development. New Phytologist, 2003, 158(2): 11-38.
[67]   French A S S U, Holman T J, Bennett M J, Pridmore T. High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiology, 2009, 150: 1784-1795.
[68]   Menon M, Robinson B, Oswald S E, Kaestner A, Abbaspour K C, Lehmann E, Schulin R. Visualization of root growth in heterogeneously contaminated soil using neutron radiography. European Journal of Soil Science, 2007, 58: 802-810.
[69]   Yazdanbakhsh N, Fisahn J. High throughput phenotyping of root growth dynamics, lateral root formation, root architecture and root hair development enabled by PlaRoM. Functional Plant Biology, 2009, 36: 938-946.
[70]   Leitner D, Klepsch S, Bodner G, Schnepf A. A dynamic root system growth model based on L-Systems. Plant and Soil, 2010, 332(1/2): 177-192.
[71]   Leitner D, Schnepf A. Root growth simulation using L-systems. Proceedings of Algoritmy 2009, 2009: 313-320.
[72]   Dupuy L, Gregory P J, Bengough A G. Root growth models: towards a new generation of continuous approaches. Journal of Experimental Botany, 2010, 61(8): 2131-2143.
[73]   Postma J A, Lynch J P. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium. Plant Physiology, 2011, 156(3): 1190-1201.
[74]   Brun F C C O, Richard-Molard C E L, Pag E S L I C, Chelle M E L, Ney B. To what extent may changes in the root system architecture of Arabidopsis thaliana grown under contrasted homogenous nitrogen regimes be explained by changes in carbon supply? A modelling approach. Journal of Experimental Botany, 2010, 61(8): 2157-2169.
[75]   Dunbabin V M, Diggle A J, Rengel Z, van Hugten R. Modelling the interactions between water and nutrient uptake and root growth. Plant and Soil, 2002, 239(1): 19-38.
[76]   汪洪, 金继运, 山内章. 以盒维数法分形分析水稻根系形态特征及初探其与锌吸收积累的关系. 作物学报, 2008, 34(9): 1637-1643.
Wang H, Jin J Y, Shan N Z. Fractal analysis of root system architecture by box-counting method and its relationship with Zn accumulation in rice (Oryza sativa L.). Acta Agronomica Sinica, 2008, 34(9): 1637-1643. (in Chinese)
[77]   贾全全, 杨晓杰. 根系分形维数及其研究进展. 安徽农业科学, 2011, 39(2): 652-653, 656.
Jia Q Q, Yang X J. Fractal dimension and it's extension to root systems. Journal of Anhui Agricultural Sciences, 2011, 39(2): 652-653, 656. (in Chinese)
[78]   唐雪梅. 武器装备小子样试验分析与评估. 北京: 国防工业出版社, 2001.
Tang X M. Analysis and Evaluation of Small Sample Testing on Weaponry. Beijing: National Defence Industry Press, 2001. (in Chinese)
[79]   王素云, 吕玺, 董玉才, 曹苏娜, 易良海. 基于小子样理论的坦克扭力轴疲劳寿命分析. 数学的实践与认知, 2009, 39(23): 119-122.
Wang S Y, Lv X, Dong Y C, Cao S N, Yi L H. Fatigue-life of tank torsion shaft analysis based on small sample statistic theory. Mathematics in Practicle and Theory, 2009, 39(23): 119-122. (in Chinese)
[80]   杜冰, 卢迎华. 小子样下基于Bayes推广理论的单桩竖向承载力研究. 水电能源科学, 2013, 31(12): 159-162.
Du B, Lu Y H. Estimation of vertical limiting bearing capacity of single pile based on bayes generalization theory in smallsample case. Water Resources and Power, 2013, 31(12): 159-162. (in Chinese)
[1] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[2] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[7] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[8] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[9] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[10] YANG BinJuan,LI Ping,HU QiLiang,HUANG GuoQin. Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields [J]. Scientia Agricultura Sinica, 2022, 55(4): 743-754.
[11] LI Long, LI ChaoNan, MAO XinGuo, WANG JingYi, JING RuiLian. Advances and Perspectives of Approaches to Phenotyping Crop Root System [J]. Scientia Agricultura Sinica, 2022, 55(3): 425-437.
[12] ZHANG HongCheng,HU YaJie,DAI QiGen,XING ZhiPeng,WEI HaiYan,SUN ChengMing,GAO Hui,HU Qun. Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382.
[13] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[14] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[15] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!