Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (2): 370-380.doi: 10.3864/j.issn.0578-1752.2015.02.17

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Molecular Cloning and Expression Analysis of a Soluble  Trehalase Gene Tre-1 in Bombus hypocrita

QIN Jia-min1,2, LUO Shu-dong1, LIAO Xiu-li1, HUANG Jia-xing1, HE Shao-yu2, WU Jie1   

  1. 1Institute of Apiculture, Chinese Academy of Agricultural Sciences/Key Laboratory for Biology of Insect-Pollinator, Ministry of Agriculture, Beijing 100093
    2Institute of Eastern Bee, Yunnan Agricultural University, Kunming 650201
  • Received:2014-06-26 Online:2015-01-16 Published:2015-01-16

Abstract: 【Objective】The objective of this study is to clone full-length cDNA sequence of the soluble trehalase gene (Tre-1) in Bombus hypocrita, predict the physicochemical properties, clarify its expression in different tissues and developmental stages, and to understand the function of this gene in the development of B. hypocrita.【Method】 Degenerate primers were designed by using Primer Premier 5.0 software according to the conservative sequences of Tre-1 in B. terrestris and B. impatiens to get the corresponding conservative fragment in B. hypocrita. Gene-specific primers were designed according to the conserved fragment. The rapid-amplification of cDNA ends (RACE) method was used to clone B. hypocrita 5′ and 3′ sequences, then the open reading frame (ORF) was amplified by the specific primers based on the initiation codon and termination codon near 5′ and 3′, respectively. Different fragments were spliced by BioEdit to obtain the full-length cDNA. The full-length cDNA was analyzed by a variety of bioinformatics softwares such as ExPASy, SignalP 4.1, NetOGlyc 1.0 sever, ClustalW and MEGA 5.0. Finally, the relative expression of Tre-1 in different tissues and developmental stages in B. hypocrita were analyzed by real-time PCR and 2-ΔΔCt method.【Result】The full-length cDNA of B. hypocrita Tre-1 is 3 129 bp, and designated as BhTre-1 (GenBank number: KJ025078). The bioinformatics analysis suggested that BhTre-1 has an ORF of 1 743 bp, a 5′ (untranslated region) UTR of 441 bp and a 3′ UTR of 945 bp. The ORF of BhTre-1 encodes a polypeptide of 580 amino acids with a predicted molecular weight of 67.16 kD, and an isoeletric point value of 5.95. Thededuced amino acid sequence has six predicted sequences of Asn-Xaa-Ser/Thr, a signature peptide, a highly conserved glycine-rich region (GGGGEY), and two conserved signature motifs (PGGRFKEFYYWDSY and QWDFPNAWPP), but no transmembrane domain. Homology comparison found that BhTre-1 has the greatest similarity to B【Conclusion】The cDNA sequence of BhTre-1 was successfully cloned from B. hypocrita, and the properties were similar with Tre-1 of other insects. BhTre-1 hasthe highest expression in midgut. In addition, the expression of BhTre-1 of adult worker was higher than at larva and pupa stages,and the expression of BhTre-1 increased first and then decreased. This study indicated that the expression patterns in different tissues and developmental stages of B. hypocrita, which will lay a foundation for biological functional research of BhTre-1.. terrestris BtTre-1 (99%)and B. impatiens BiTre-1 (98%), it also has greater similarity to Tre-1 of Apis mellifera and A. florea which have 78% sequence homology. The phylogenetic tree analysis showed that BhTre-1 was first clustered with BtTre-1, BiTre-1, AmTre-1 and AfTre-1. The results agreed with the sequence homology analysis. Tissue-specific expression results indicated that BhTre-1was expressed in all the major tissues, it had the highest expression in midgut, then Malpighian tubules, and lower expression in other tissues. The expression of BhTre-1 in adult worker was higher than at larva and pupa stages, and it increased from the 1st day after emergence, and had the maximum expression in the 15-day-old adults, then, it decreased with the age.

Key words: Bombus hypocrita, soluble trehalase gene, clone, sequence analysis, gene expression

[1]    Williams P H, An J D, Huang J X, Yao J. A new initiative to document Chinese bumble bees for pollination research. Journal of Apicultural Research and Bee World, 2010, 49: 221-222.
[2]    吴杰, 安建东, 姚建, 黄家兴, 冯学全. 河北省熊蜂属区系调查 (膜翅目, 蜜蜂科). 动物分类学报, 2009, 34(1): 87-97.
Wu J, An J D, Yao J, Huang J X, Feng X Q. Bombus fauna (Hymenoptera, Apidae) in Hebei, China. Acta Zootaxonomica Sinica, 2009, 34(1): 87-97. (in Chinese)
[3]    安建东, 黄家兴, Williams P H, 吴杰, 周冰峰. 河北地区熊蜂物种多样性与蜂群繁育特性. 应用生态学报, 2010, 21: 1542-1550.
An J D, Huang J X, Williams P H, Wu J, Zhou B F. Species diversity and colony characteristics of bumblebees in the Hebei region of North China. Chinese Journal of Applied Ecology, 2010, 21: 1542-1550. (in Chinese)
[4]    Thompson S N. Trehalose-the insect ‘blood’ sugar. Advance in Insect Physiology, 2003, 31: 205-285.
[5]    于彩虹, 卢丹, 林荣华, 王晓军, 姜辉, 赵飞. 海藻糖—昆虫的血糖. 昆虫知识, 2008, 45(5): 832-837.
Yu C H, Lu D, Lin R H, Wang X J, Jiang H, Zhao F. Trehalose-the blood sugar in insects. Chinese Bulletin of Entomology, 2008, 45(5): 832-837. (in Chinese)
[6]    王军娥, 刘静. 海藻糖酶的研究进展. 贵州农业科学, 2009, 37(4): 88-90.
Wang J E, Liu J. Research progress of insect trehalase. Guizhou Agricultural Sciences, 2009, 37(4): 88-90. (in Chinese)
[7]    Tatun N, Singtripop T, Tungjitwitayakul J, Sakurai S. Regulation of soluble and membrane-bound trehalase activity and expression of the enzyme in the larval midgut of the bamboo borer Omphisa fuscidentalis. Insect Biochemistry and Molecular Biology, 2008, 38: 788-795.
[8]    张文庆, 陈晓菲, 唐斌, 田宏刚, 陈洁, 姚琼. 昆虫几丁质合成及其调控研究前沿. 应用昆虫学报, 2011, 48(3): 475-479.
Zhang W Q, Chen X F, Tang B, Tian H G, Chen J, Yao Q. Insect chitin biosynthesis and its regulation. Chinese Journal of Applied Entomology, 2011, 48(3): 475-479. (in Chinese)
[9]    Mitsumasu K, Kanamori Y, Fujita M, Iwata K, Tanaka D, Kikuta S, Watanabe M, Cornette R, Okuda T, Kikawada T. Enzymatic control of anhydrobiosis-related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki. The FEBS Journal, 2010, 277: 4215-4228.
[10]   Ponnuvel K M, Murthy G N, Awasthi A K, Rao G, Vijayaprakash N B. Differential gene expression during early embryonic development in diapause and non-diapause eggs of multivoltine silkworm Bombyx mori. Indian Journal of Experimental Biology, 2010, 48: 1143-1151.
[11]   Clegg J, Evans D. Blood trehalose and flight metabolism in the blowfly. Science, 1961, 134: 54-55.
[12]   Tang B, Chen X F, Liu Y, Tian H G, Liu J, Hu J, Xu W H, Zhang W Q. Characterization and expression patterns of a membrane-bound trehalase from Spodoptera exigua. BMC Molecular Biology, 2008, 9: 51.
[13]   Gu J H, Shao Y, Zhang C W, Liu Z W, Zhang Y J. Characterization of putative soluble and membrane-bound trehalases in a hemipteran insect, Nilaparvata lugens. Journal of Insect Physiology, 2009, 55: 997-1002.
[14]   Forcella M, Cardona F, Goti A, Parmeggiani C, Cipolla L, Gregori M, Schirone R, Fusi P, Parenti P. A membrane-bound trehalase from Chironomus riparius larvae: purification and sensitivity to inhibition. Glycobiology, 2010, 20(9): 1186-1195.
[15]   Takiguchi M, Niini T, Su Z H, Yaginuma T. Trehalase from male accessory gland of an insect, Tenebrio molitor cDNA sequencing and developmental profile of the gene expression. Biochemistry Journal, 1992, 288: 19-22.
[16]   刘晓健, 张欢欢, 李大琪, 崔淼, 马恩波, 张建珍. 飞蝗可溶型海藻糖酶基因的序列分析及mRNA表达特性. 昆虫学报, 2012, 55(11): 1264-1271.
Liu X J, Zhang H H, Li D Q, Cui M, Ma E B, Zhang J Z. Sequence characterization and mRNA expression profiling of a soluble trehalase gene in Locusta migratoria (Orthoptera: Acrididae). Acta Entomologica Sinica, 2012, 55(11): 1264-1271. (in Chinese)
[17]   Ge L Q, Zhao K F, Huang L J, Wu J C. The effects of triazophos on the trehalose content, trehalase activity and their gene expression in the brown planthopper Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Pesticide Biochemistry and Physiology, 2011, 100: 172-181.
[18]   Chen J, Tang B, Chen H X, Yao Q, Huang X F, Chen J, Zhang D W, Zhang W Q. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS One, 2010, 5(4): e10133.
[19]   Mitsumasu K, Azuma M, Niimi T, Yamashita O, Yaginuma T. Membrane-penetrating trehalase from silkworm Bombyx mori. Molecular cloning and localization in larval midgut. Insect Molecular Biology, 2005, 14(5): 501-508.
[20]   唐斌, 魏苹, 陈洁, 王世贵, 张文庆. 昆虫海藻糖酶的基因特性及功能研究进展. 昆虫学报, 2012, 55(11): 1315-1321.
Tang B, Wei P, Chen J, Wang S G, Zhang W Q. Progress in gene features and functions of insect trehalases. Acta Entomologica Sinica, 2012, 55(11): 1315-1321. (in Chinese)
[21]   陈静, 张文庆. 褐飞虱膜结合型海藻糖酶基因的RNAi研究. http://www.paper.edu.cn. 2010.
Chen J, Zhang W Q. Functional analysis of membrane-bound trehalase gene of Nilaparvata lugens by RNA interference. http://www.paper.edu.cn. 2010. (in Chinese)
[22]   张倩, 鲁鼎浩, 蒲建, 吴敏, 韩召军. 灰飞虱海藻糖酶基因的克隆及RNA干扰效应, 昆虫学报, 2012, 55(8): 911-920.
Zhang Q, Lu D H, Pu J, Wu M, Han Z J. Cloning and RNA interference effects of trehalase genes in Laodelphax striatellus (Homoptera: Delphacidae). Acta Entomologica Sinica, 2012, 55(8): 911-920. (in Chinese).
[23]   Kamei Y, Hasegawa Y, Niimi T, Yamashita O, Yaginuma T. Trehalase-2 protein contributes to trehalase activity enhanced by diapause hormone in developing ovaries of the silkworm, Bombyx mori. Journal of Insect Physiology, 2011, 57(5): 608-613.
[24]   谭永安, 肖留斌, 孙洋, 柏立新. 绿盲蝽水溶性海藻糖酶ALTre-1基因原核表达纯化与酶学特性. 中国农业科学, 2013, 46(17): 3587-3593.
Tan Y A, Xiao L B, Sun Y, Bai L X. Prokaryotic expression, purification and functional activity assay in vitro of soluble trehalse from Apolygus lucorum. Scientia Agricultura Sinica, 2013, 46(17): 3587-3593. (in Chinese)
[25]   谭永安, 肖留斌, 柏立新, 孙洋. 绿盲蝽膜结合型海藻糖酶ALTre-2基因表达、纯化及酶学特性. 棉花学报, 2013, 25(5): 396-402.
Tan Y A, Xiao L B, Bai L X, Sun Y. Expression, purification and enzymatic activity of a membrane-bound trehalse gene from Apolygus lucorum. Cotton Science, 2013, 25(5): 396-402. (in Chinese)
[26]   Bansal R, Main M A R, Mittapalli O, Michel A P. Molecular characterization and expression analysis of soluble trehalase gene in Aphis glycines, a migratory pest of soybean. Bulletin of Entomological Research, 2013, 103: 286-295.
[27]   于彩虹, 黄莹, 林荣华, 姜辉, 王文涛, 裴力. 五种昆虫可溶性海藻糖酶活性比较. 植物保护, 2013, 39(4): 5-9.
Yu C H, Huang Y, Lin R H, Jiang H, Wang W T, Pei L. Comparative tests of soluble trehalase activitives of five insects. Plant Protection, 2013, 39(4): 5-9. (in Chinese)
[28]   Wang J, He W B, Su Y L, Bing X L, Liu S S. Molecular characterization of soluble and membrane-bound trehalases of the whitefly, Bemisia tabaci. Archives of Insect Biochemistry and Physiology, 2014, 85(4): 216-233.
[29]   Lee J H, Saito S, Mori H, Nishimoto M, Okuyama M, Kim D, Wongchawalit J, Kimura A, Chiba S. Molecular cloning of cDNA for trehalase from the European honeybee, Apis mellifera L., and its heterologous expression in Pichia pastoris. Bioscience, Biotechnology, Biochemistry, 2007, 71(9): 2256-2265.
[30]   廖秀丽. 小峰熊蜂的乙酰胆碱酯酶时空表达特性研究[D]. 北京: 中国农业科学院, 2012.
Liao X L. Temporal and spatial expression of acetylcholinesterase in the bumblebee Bombus hypocrita (Hymenoptera: Apidae)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[31]   魏苹. 赤拟谷盗海藻糖酶基因调控后几丁质合成及能量代谢的功能研究[D]. 杭州: 杭州师范大学, 2013.
Wei P. Regulation functions of trehalase in the pathway of energy metabolism and chitin biosynthesis in Tribolium castaneum revealed by RNA interference[D]. Hangzhou: Hangzhou Normal University, 2013. (in Chinese)
[32]   Silva M C P, Ribeiro A F, Terra W R, Ferreira C. Sequencing of Spodoptera frugiperda midgut trehalases and demonstration of secretion of soluble trehalase by midgut columnar cells. Insect Molecular Biology, 2009, 18(6): 769-784.
[33]   Tan Y A, Xiao L B, Sun Y, Zhao J, Bai L X. Molecular characterization of soluble and membrane-bound trehalases in the cotton mirid bug, Apolygus lucorum. Archives of Insect Biochemistry and Physiology, 2014, 86(2): 107-121.
[34]   高丽娇, 黄家兴, 吴杰. 小峰熊蜂蜂毒磷脂酶A2基因的克隆及表达分析. 昆虫学报, 2013, 56(9): 974-981.
Gao L J, Huang J X, Wu J. Cloning and expression analysis of a gene encoding phospholipase A2 from the venom of Bombus hypocrita (Hymenoptera: Apidae). Acta Entomologica Sinica, 2013, 56(9): 974-981. (in Chinese)
[35]   徐龙龙, 吴杰, 郭军, 李继莲. 共生菌群在熊蜂生长发育过程中的动态变化. 中国农业科学, 2014, 47(10): 2030-2037.
Xu L L, Wu J, Guo J, Li J L. Dynamic variation of symbionts in bumblebees during hosts growth and development. Scientia Agricultura Sinica, 2014, 47(10): 2030-2037. (in Chinese)
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[4] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[5] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[6] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[7] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[8] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[9] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[10] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[11] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[12] GUO FengHui,DING Yong,JI Lei,LI XianSong,LI XiLiang,HOU XiangYang. The Response of Leymus chinensis Cloned Offspring to Mowing [J]. Scientia Agricultura Sinica, 2022, 55(11): 2257-2264.
[13] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[14] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[15] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!