Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (11): 2257-2264.doi: 10.3864/j.issn.0578-1752.2022.11.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

The Response of Leymus chinensis Cloned Offspring to Mowing

GUO FengHui1,2(),DING Yong2,JI Lei2,LI XianSong2,LI XiLiang2(),HOU XiangYang1,2()   

  1. 1Shanxi Agricultural University, Taiyuan 030012
    2Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010
  • Received:2020-07-22 Accepted:2022-04-15 Online:2022-06-01 Published:2022-06-16
  • Contact: XiLiang LI,XiangYang HOU E-mail:guofhui@163.com;lixiliang0824@126.com;houxy16@vip.126.com

Abstract:

【Background】 Grazing could alter the morphological and photosynthetic physiological characters of the Leymus chinensis cloned offspring, but whether grazing influence the adaptability of that to grazing is unclear. 【Objective】 The aim of this study was to investigate whether grazing history enhanced the adaptability of Leymus chinensis cloned offspring to livestock grazing.【Method】 The Leymus chinensis cloned offspring with different grazing histories (enclosed in 1983 VS long-term free grazing) were used to conduct pot experiment in the greenhouse, and their adaptability to simulated livestock grazing (clipping) was compared in terms of individual traits, ramet number, biomass, and biomass allocation. 【Result】 (1) There was a significant interact effect between maternal grazing history and clipping treatment. The individual height and biomass of grazing (GZ) were more resistant to clipping treatment than that of nograzing (NG), while the response of ramet number to clip was not influenced by maternal grazing history. (2) Grazing history altered the responses of aboveground, root, rhizome and total biomass to the clipping treatment. There was significant interaction between grazing history and mowing treatment in terms of the rhizome biomass, while the interaction on other three indicators were not significant. However, the other three indicators of NG had the larger plasticity index and absolute reduction to clipping treatment. Therefore, the maternal grazing experience enhanced the adaptability of L. chinensis cloned offspring to clipping treatment. (3) The cutting biomass of NG was significantly lower than that of GZ, but the cutting degree of NG was significantly higher than that of GZ.(4) The responses of GZ biomass allocation to clipping treatment were not significant, while rhizome biomass allocation of NG significantly decreased under clipping treatment. 【Conclusion】 The grazing disturbance could enhance the adaption of Leymus chinensis cloned offspring to grazing. The maternal grazing history did not enhance the adaptability of L. chinensis cloned offspring to livestock grazing by altering biomass allocation. The response of leaf photosynthetic physiology and grazing avoidance might be the reasons for the enhancement of grazing fitness. In this study, the environmental disturbance factors, such as soil factors, were excluded through control experiments, and the response of L. chinensis cloned offspring traits to grazing was studied from the perspective of the plant itself. Thus, this study provided a new perspective for fully understanding the process of grazing degradation in grassland ecosystem.

Key words: grazing history, Leymus chinensis, cloned offspring, livestock foraging, adaptation

Fig. 1

The responses of GZ and NG to clipping in terms of individual characters and ramet number CK indicates control treatment while CT indicates clipping treatment. “P” is the result of Two-Way ANOVA, and P<0.05 indicates the significant interaction while P<0.01 indicates the extremely significant interaction. “NO” means that Two-Way ANOVA is not conducted. “The red line (一)” represents the response of GZ (Leymus chinensis derived from grazing area) to clipping treatment, and the red words “PI, ∆” besides the red line indicate the plastic index and variation of GZ to clipping, respectively, and the red symbol “*” ahead “PI, ∆” indicates the significant effect of clipping treatment. “The black line (一)” represents the response of NG (Leymus chinensis derived from enclosing area) to clipping treatment, and the black words “PI, ∆” respectively indicate the plasticity index and variation of NG to clipping treatment. and the black symbol “*” ahead “PI, ∆” indicates the significant effect of clipping treatment. “*” between the red and black error lines indicates that there is a significant difference between NG and GZ under control or clipping treatment. The same as below"

Fig. 2

The responses of GZ and NG to clipping treatment in terms of biomass accumulation “ns” indicates that there is no significant effect between NG and GZ, or CK and CT"

Fig. 3

The removed biomass and clipping degree of GZ and NG under the clipping treatment The red bars indicate NG while the green bars indicate GZ"

Fig. 4

The responses of GZ and NG to clipping treatment in terms of biomass allocation"

[1] 韩兴国, 李凌浩. 内蒙古草地生态系统维持机理[D]. 北京: 中国农业大学出版社, 2012.
HAN X G, LI L H. Mechanisms for maintaining inner Mongolian grassland ecosystems[D]. Beijing: China Agricultural University Press, 2012. (in Chinese)
[2] 李向林. 草原管理的生态学理论与概念模式进展. 中国农业科学, 2018, 51(1): 191-202. doi: 10.3864/j.issn.0578-1752.2018.01.018.
doi: 10.3864/j.issn.0578-1752.2018.01.018
LI X L. Advances in ecological theories and management models regarding rangeland management. Scientia Agricultura Sinica, 2018, 51(1): 191-202. doi: 10.3864/j.issn.0578-1752.2018.01.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.01.018
[3] 方精云, 耿晓庆, 赵霞, 沈海花, 胡会峰. 我国草地面积有多大? 科学通报, 2018, 63(17): 1731-1739. doi: 10.1360/N972018-00032.
doi: 10.1360/N972018-00032
FANG J Y, GENG X Q, ZHAO X, SHEN H H, HU H F. How many areas of grasslands are there in China? Chinese Science Bulletin, 2018, 63(17): 1731-1739. doi: 10.1360/N972018-00032. (in Chinese)
doi: 10.1360/N972018-00032
[4] 方精云, 景海春, 张文浩, 高树琴, 段子渊, 王竑晟, 钟瑾, 潘庆民, 赵凯, 白文明, 李凌浩, 白永飞, 蒋高明, 黄建辉, 黄振英. 论草牧业的理论体系及其实践. 科学通报, 2018, 63(17): 1619-1631. doi: 10.1360/N972018-00042
doi: 10.1360/N972018-00042
FANG J Y, JING H C, ZHANG W H, GAO S Q, DUAN Z Y, WANG H S, ZHONG J, PAN Q M, ZHAO K, BAI W M, LI L H, BAI Y F, JIANG G M, HUANG J H, HUANG Z Y. The concept of “Grass-based Livestock Husbandry” and its practice in Hulun Buir, Inner Mongolia. Chinese Science Bulletin, 2018, 63(17): 1619-1631. doi: 10.1360/N972018-00042 (in Chinese)
doi: 10.1360/N972018-00042
[5] 王炜, 梁存柱, 刘钟龄, 郝敦元. 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报, 2000, 24(3): 268-274.
WANG W, LIANG C Z, LIU Z L, HAO D Y. Analysis of the plant individual behaviour during the degradation and restoring succession in steppe community. Acta Phytoecologica Sinica, 2000, 24(3): 268-274. (in Chinese)
[6] 李西良, 刘志英, 侯向阳, 吴新宏, 王珍, 胡静, 武自念. 放牧对草原植物功能性状及其权衡关系的调控. 植物学报, 2015, 50(2): 159-170. doi: 10.3724/SP.J.1259.2015.00159.
doi: 10.3724/SP.J.1259.2015.00159
LI X L, LIU Z Y, HOU X Y, WU X H, WANG Z, HU J, WU Z N. Plant functional traits and their trade-offs in response to grazing: A review. Chinese Bulletin of Botany, 2015, 50(2): 159-170. doi: 10.3724/SP.J.1259.2015.00159. (in Chinese)
doi: 10.3724/SP.J.1259.2015.00159
[7] PAINTER E L, DETLING J K, STEINGRAEBER D A. Plant morphology and grazing history. Vegetation, 1993, 106(1): 37-62. doi: 10.1007/bf00044857.
doi: 10.1007/bf00044857
[8] DIDIANO T J, TURLEY N E, EVERWAND G, SCHAEFER H, CRAWLEY M J, JOHNSON M T J. Experimental test of plant defence evolution in four species using long-term rabbit exclosures. Journal of Ecology, 2014, 102(3): 584-594. doi: 10.1111/1365-2745.12227.
doi: 10.1111/1365-2745.12227
[9] ROTUNDO J L, AGUIAR M R. Herbivory resistance traits in populations of Poa ligularis subjected to historically different sheep grazing pressure in Patagonia. Plant Ecology, 2008, 194(1): 121-133. doi: 10.1007/s11258-007-9279-8.
doi: 10.1007/s11258-007-9279-8
[10] JARAMILLO V J, DETLING J K. Grazing history, defoliation, and competition: Effects on shortgrass production and nitrogen accumulation. Ecology, 1988, 69(5): 1599-1608. doi: 10.2307/1941657.
doi: 10.2307/1941657
[11] 杨允菲, 辛晓平, 李建东. 基于表型与遗传分化的羊草在中国草原扩散途径的探讨. 中国农业科学, 2020, 53(13): 2541-2549. doi: 10.3864/j.issn.0578-1752.2020.13.003.
doi: 10.3864/j.issn.0578-1752.2020.13.003
YANG Y F, XIN X P, LI J D. A discussion on the diffusion pathway of Leymus chinensis in the natural grassland of China based on differentiation in the phenotypes and genotypes. Scientia Agricultura Sinica, 2020, 53(13): 2541-2549. doi: 10.3864/j.issn.0578-1752.2020.13.003. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.13.003
[12] REN W B, HU N N, HOU X Y, ZHANG J Z, GUO H Q, LIU Z Y, KONG L Q, WU Z N, WANG H, LI X L. Long-term overgrazing- induced memory decreases photosynthesis of clonal offspring in a perennial grassland plant. Frontiers in Plant Science, 2017, 8: 419. doi: 10.3389/fpls.2017.00419.
doi: 10.3389/fpls.2017.00419
[13] 郭丰辉, 丁勇, 马文静, 李贤松, 李西良, 侯向阳. 母体放牧经历对羊草克隆后代干旱敏感性的影响. 草业学报, 2021, 30(8): 119-126. doi: 10.11686/cyxb2020308.
doi: 10.11686/cyxb2020308
GUO F H, DING Y, MA W J, LI X S, LI X L, HOU X Y. Maternal grazing exposure altered the responses of Leymus chinensis cloned offspring to drought environment. Acta Prataculturae Sinica, 2021, 30(8): 119-126. doi: 10.11686/cyxb2020308. (in Chinese)
doi: 10.11686/cyxb2020308
[14] MA W J, LI J, JIMOH S O, ZHANG Y J, GUO F H, DING Y, LI X L, HOU X Y. Stoichiometric ratios support plant adaption to grazing moderated by soil nutrients and root enzymes. PeerJ, 2019, 7: e7047. doi: 10.7717/peerj.7047.
doi: 10.7717/peerj.7047
[15] 李林芝, 张德罡, 辛晓平, 闫玉春, 杨桂霞, 李瑾, 王旭. 呼伦贝尔草甸草原不同土壤水分梯度下羊草的光合特性. 生态学报, 2009, 29(10): 5271-5279. doi: 10.3321/j.issn:1000-0933.2009.10.013.
doi: 10.3321/j.issn:1000-0933.2009.10.013
LI L Z, ZHANG D G, XIN X P, YAN Y C, YANG G X, LI J, WANG X. Photosynthetic characteristics of Leymus chinensis under different soil moisture grades in Hulunber prairie. Chinese Journal of Plant Ecology, 2009, 29(10): 5271-5279. doi: 10.3321/j.issn:1000-0933.2009.10.013. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2009.10.013
[16] VALLADARES F, SANCHEZ-GOMEZ D, ZAVALA M A. Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 2006, 94(6): 1103-1116. doi: 10.1111/j.1365-2745.2006.01176.x.
doi: 10.1111/j.1365-2745.2006.01176.x.
[17] 达尔文. 物种起源:附《进化论的十大猜想》. 舒德干译. 北京: 北京大学出版社, 2018.
DARWIN. Origin of Species. SHU D G Translating. Beijing: Peking University Press, 2018. (in Chinese)
[18] HOLESKI L M, JANDER G, AGRAWAL A A. Transgenerational defense induction and epigenetic inheritance in plants. Trends in Ecology & Evolution, 2012, 27(11): 618-626. doi: 10.1016/j.tree.2012.07.011.
doi: 10.1016/j.tree.2012.07.011
[19] MOLINIER J, RIES G, ZIPFEL C, HOHN B. Transgeneration memory of stress in plants. Nature, 2006, 442(7106): 1046-1049. doi: 10.1038/nature05022.
doi: 10.1038/nature05022
[20] 陈钊, 梁新平, 侯扶江, 田苗苗, 张红瑞, 余莹, 管永卓, 王成章, 严学兵. 不同放牧强度下垂穗披碱草遗传多样性分析. 草业学报, 2015, 24(8): 159-165. doi: 10.11686/cyxb2014355.
doi: 10.11686/cyxb2014355
CHEN Z, LIANG X P, HOU F J, TIAN M M, ZHANG H R, YU Y, GUAN Y Z, WANG C Z, YAN X B. Genetic diversity of Elymus nutans under different grazing intensities. Acta Prataculturae Sinica, 2015, 24(8): 159-165. doi: 10.11686/cyxb2014355. (in Chinese)
doi: 10.11686/cyxb2014355
[21] ANTONOVICS J. Evolution in closely adjacent plant populations X: Long-term persistence of prereproductive isolation at a mine boundary. Heredity 2006, 97(1): 33-37. doi: 10.1038/sj.hdy.6800835.
doi: 10.1038/sj.hdy.6800835
[22] SILVERTOWN J, POULTON P, JOHNSTON E, EDWARDS G, HEARD M, BISS P M. The Park Grass Experiment 1856-2006: Its contribution to ecology. Journal of Ecology, 2006, 94(4): 801-814. doi: 10.1111/j.1365-2745.2006.01145.x.
doi: 10.1111/j.1365-2745.2006.01145.x.
[23] 李丽丽. 中国东北样带长期放牧干扰下羊草种群表型可塑性及遗传多态性的初步研究[D]. 长春: 东北师范大学, 2010.
LI L L. A study of phenotypic plasticity and genetic polymorphism of Leymus chinensis populations under a long-term grazing disturbance along northeast China transect (nect)[D]. Changchun: Northeast Normal University, 2010. (in Chinese)
[24] YIN J J, ZHOU M, LIN Z R, LI Q Q, ZHANG Y Y. Transgenerational effects benefit offspring across diverse environments: A meta-analysis in plants and animals. Ecology Letters, 2019, 22(11): 1976-1986. doi: 10.1111/ele.13373.
doi: 10.1111/ele.13373
[25] POORTER H, NIKLAS K J, REICH P B, OLEKSYN J, POOT P, MOMMER L. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 2012, 193(1): 30-50. doi: 10.1111/j.1469-8137.2011.03952.x.
doi: 10.1111/j.1469-8137.2011.03952.x.
[26] SCHWACHTJE J, BALDWIN I T. Why does herbivore attack reconfigure primary metabolism? Plant Physiology, 2008, 146(3): 845-851. doi: 10.1104/pp.107.112490.
doi: 10.1104/pp.107.112490
[27] YIN J J, LI X L, GUO H Q, ZHANG J Z, KONG L Q, REN W B. Legacy effects of historical grazing alter leaf stomatal characteristics in progeny plants. PeerJ, 2020, 8: e9266. doi: 10.7717/peerj.9266.
doi: 10.7717/peerj.9266
[28] DÍAZ S, LAVOREL S, MCINTYRE S, FALCZUK V, CASANOVES F, MILCHUNAS D G, SKARPE C, RUSCH G, STERNBERG M, NOY-MEIR I, LANDSBERG J, ZHANG W, CLARK H, CAMPBELL B D. Plant trait responses to grazing - a global synthesis. Global Change Biology, 2007, 13(2): 313-341. doi: 10.1111/j.1365-2486.2006.01288.x.
doi: 10.1111/j.1365-2486.2006.01288.x.
[29] 侯扶江, 杨中艺. 放牧对草地的作用. 生态学报, 2006, 26(1): 244-264. doi: 10.3321/j.issn:1000-0933.2006.01.031.
doi: 10.3321/j.issn:1000-0933.2006.01.031
HOU F J, YANG Z Y. Effects of grazing of livestock on grassland. Chinese Journal of Plant Ecology, 2006, 26(1): 244-264. doi: 10.3321/j.issn:1000-0933.2006.01.031. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2006.01.031
[30] FUTUYMA D J. 生物进化. 葛颂, 顾红雅, 饶广远, 张德兴, 杨继, 孔宏智, 王宇飞译. 北京: 高等教育出版社, 2016.
FUTUYMA D J. Evolution. GE S, GU H Y, RAO G Y, ZHANG D X, YANG J, KONG R Z, WANG Y F translating. Beijing: Higher Education Press, 2016. (in Chinese)
[31] PATTY L, HALLOY S R P, HILTBRUNNER E, KÖRNER C. Biomass allocation in herbaceous plants under grazing impact in the high semi-arid Andes. Flora - Morphology, Distribution, Functional Ecology of Plants, 2010, 205(10): 695-703. doi: 10.1016/j.flora.2009.12.039.
doi: 10.1016/j.flora.2009.12.039
[32] 李青芝, 李成伟, 杨同文. DNA甲基化介导的植物逆境应答和胁迫记忆. 植物生理学报, 2014, 50(6): 725-734. doi: 10.13592/j.cnki.ppj.2013.0516.
doi: 10.13592/j.cnki.ppj.2013.0516
LI Q Z, LI C W, YANG T W. Stress response and memory mediated by DNA methylation in plants. Plant Physiology Journal, 2014, 50(6): 725-734. doi: 10.13592/j.cnki.ppj.2013.0516. (in Chinese)
doi: 10.13592/j.cnki.ppj.2013.0516
[1] WU CaoYang,LIANG ShiHan,QIU Jun,GAO JinFeng,GAO XiaoLi,WANG PengKe,FENG BaiLi,YANG Pu. An Examination on Breeding Status Quo of Chinese Tartary Buckwheat Varieties Based on the National Cross-Country Tests of Tartary Buckwheat Varieties in China over 12 Consecutive Years [J]. Scientia Agricultura Sinica, 2020, 53(19): 3878-3892.
[2] XU ShiWei,DI JiaYing,LI GanQiong,ZHUANG JiaYu. The Methodology and Application of Agricultural Monitoring and Early Warning Model Cluster [J]. Scientia Agricultura Sinica, 2020, 53(14): 2859-2871.
[3] YANG YunFei,XIN XiaoPing,LI JianDong. A Discussion on the Diffusion Pathway of Leymus Chinensis in the Natural Grassland of China Based on Differentiation in the Phenotypes and Genotypes [J]. Scientia Agricultura Sinica, 2020, 53(13): 2541-2549.
[4] HOU LuLu,YAN RuiRui,ZHANG Yu,XIN XiaoPing. Effects of Grazing Intensity on Functional Traits of Leymus chinensis in Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2562-2572.
[5] YAN RuiRui,ZHANG Yu,XIN XiaoPing,WEI ZhiJun,Wuren qiqige,GUO MeiLan. Effects of Mowing Disturbance on Grassland Plant Functional Groups and Diversity in Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2573-2583.
[6] WAN DongLi,HOU XiangYang,DING Yong,REN WeiBo,WANG Kai,LI XiLiang,WAN YongQing. Response and the Expression of Pi-Responsive Genes in Leymus chinensis Under Inorganic Phosphate Treatment [J]. Scientia Agricultura Sinica, 2019, 52(23): 4215-4227.
[7] DIAO XianMin, CHENG RuHong. Guidance of the SPECIAL FOCUS "Breeding of Foxtail Millet and Common Millet":: Current Breeding Situation of Foxtail Millet and Common Millet in China as Revealed by Exploitation of 15 Years Regional  Adaptation Test Data [J]. Scientia Agricultura Sinica, 2017, 50(23): 4469-4474.
[8] ZHANG AiYing, GUO ErHu, DIAO XianMin, FAN HuiPing, LI YuHui, WANG LiXia, GUO HongLiang, CHENG LiPing, Wu YinSheng. Evaluation of Foxtail Millet Cultivars Developed in the Middle and Late-Maturing Spring-Sowing Region in Northwest China in 2005-2015 [J]. Scientia Agricultura Sinica, 2017, 50(23): 4486-4495.
[9] LI ZhiJiang, MA JinFeng, LI YanDong, LI XiangYu, DIAO XianMin, ZHANG Ting. Evaluation of Foxtail Millet Cultivars Developed in Northeast China Spring-Sowing Region in Recent Years [J]. Scientia Agricultura Sinica, 2017, 50(23): 4507-4516.
[10] YANG Pu, Rabia Begum Panhwar, LI Jing, GAO JinFeng, GAO XiaoLi, WANG PengKe, FENG BaiLi. Changes of Yield and Traits of Broomcorn Millet Cultivars in China Based on the Data from National Cultivars Regional Adaptation Test [J]. Scientia Agricultura Sinica, 2017, 50(23): 4517-4529.
[11] LU Shao-hua, LI Jing-jing, LIU Ming-yang, BAI Run-e, TANG Qing-bo, YAN Feng-ming. Comparative Analysis of the Competitiveness Between B and Q Biotypes of Bemisia tabaci Under Laboratory Conditions [J]. Scientia Agricultura Sinica, 2015, 48(7): 1339-1347.
[12] HE Zhong-hu, CHEN Xin-min, WANG De-sen, ZHANG Yan, XIAO Yong-gui, LI Fa-ji,ZHANG Yong, LI Si-min, XIA Xian-chun, ZHANG Yun-hong, ZHUANG Qiao-sheng. Characterization of Wheat Cultivar Zhongmai 175 with High Yielding Potential, High Water and Fertilizer Use Efficiency, and Broad Adaptability [J]. Scientia Agricultura Sinica, 2015, 48(17): 3394-3403.
[13] ZHANG Hao, CHEN Jin-xiang, LIU Hai-he, ZHOU Zhong-hua, WANG Feng. Adaptation Mechanism to Aquatic Environment of Cotton Seedlings Roots in Floating Nursing Seedlings in Nutrient Water-Bed (FNSNW) [J]. Scientia Agricultura Sinica, 2014, 47(17): 3372-3381.
[14] SHI Wen-Jiao, TAO Fu-Lu. Climate Change and Agricultural Production in Africa: A Review of Impacts and Adaptations [J]. Scientia Agricultura Sinica, 2014, 47(16): 3157-3166.
[15] CHEN Zhao-Bo-1, DONG Wen-1, HUO Zhi-Guo-2, ZHANG Zheng-Bin-3, CHEN Xia-4, LI Mao-Song-5, YANG Xiao-Guang-6, CHEN Yin-Ji-4. Research Advances and the Development Direction of Key Techniques for Agriculture Addressing Climate Change in China [J]. Scientia Agricultura Sinica, 2013, 46(15): 3097-3104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!