Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (22): 4380-4391.doi: 10.3864/j.issn.0578-1752.2014.22.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & ECOLOGY • Previous Articles     Next Articles

Analysis of Physiological Characteristics about ABA Alleviating Rice Booting Stage Drought Stress

GUO Gui-hua, LIU Hai-yan, LI Gang-hua, LIU Ming, LI Yan, WANG Shao-hua, LIU Zheng-hui, TANG She, DING Yan-feng   

  1. College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing 210095
  • Received:2013-12-16 Revised:2014-02-24 Online:2014-11-16 Published:2014-11-16

Abstract: 【Objective】The objective of the study is to reveal the drought tolerance mechanisms of different rice varieties and the physiological mechanisms about ABA reliving rice drought stress.【Method】Japonica drought tolerance rice Zaoyuxiangjing and conventional japonica rice Nanjing44 were pot planted until booting stage, and 150 mg·kg-1 of abscisic acid (ABA) was sprayed on leaf to study the influence on rice antioxidant enzyme activity (SOD, CAT), membrane lipid peroxidation (MDA) content, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), chlorophyll and soluble sugar(SS)content, biomass accumulation, yield per pot and yield components. Finally, their different biological and physiological drought resistance and response to ABA treatment were compared.【Result】During drought stress, rice maintained higher SOD and CAT activities, leading to a lower MDA content to a certain extent. They synthesized higher soluble sugar content to maintain cell osmotic adjustment. The leaf net Pn decreased consistently. Gs also showed a downward trend with increasing water stress, and Tr consistented with the Gs. Chlorophyll a synthesis was inhibited, and the content decreased. The result showed that dry matter accumulation and yield per pot were decreased significantly compared with CK. Two varieties showed significant differences in response to drought stress, and Zaoyuxiangjing was more drought resistant than Nanjing44. When ABA treated, Pn and dry matter accumulation were reduced in short time. While SOD activity was further improved, leading to reduction of MDA accumulation. Meanwhile, exogenous ABA induced stomatal closure during drought stress and reduced transpiration rate, the excessive water consumption was reduced and water use efficiency was improved, thus having a significant protective effect on rice, reduced the metabolic function of drought on rice physiological damage, and accelerated functional recovery after rehydration, keeping higher content of chlorophyll a to prevent leaf premature. The effect of ABA treatment was more significant on Zaoyuxiangjing. Its Pn, Gs and Tr recovered quickly after rehydration and a significant increase in chlorophyll a content. ABA also promoted its soluble sugar synthesis and dry matter accumulation more faster under drought stress, then improved its grains of per panicle, filled grain rate, 1000-grain weight and grain yield per pot significantly. ABA effect was weaker on Nanjing44 because of its general drought resistance. Nanjing44 was susceptible to drought stress, less sensitive to ABA, slow physiological and growth characteristics recovery. Although ABA significantly increased Nanjing 44 grains per panicle, filled grain rate and 1000-grain weight, it did not significantly increase the yield per pot.【Conclusion】The short-term “dormancy” effect on rice of ABA could relieve the physiological metabolic function damage of riceunder booting stage stress effectively, promote its functional recovery after rehydration, and mitigate the effects of drought on yield. There were differences in the response to ABA between different drought resistance varieties. The stronger drought resistance variety was more sensitive to ABA and displayed better result to exogenous ABA.

Key words: drought stress, rice, booting stage, ABA, physiological characteristic

[1]    王春乙, 娄秀英, 王建林. 中国农业气象灾害对作物产量的影响. 自然灾害学报, 2007, 16(5): 37-43.
Wang C Y, Lou X Y, Wang J L. Impact of Chinese agricultural meteorological disasters on crop yield. Journal of Natural Disasters, 2007, 16(5): 37-43. (in Chinese)
[2]    李成业, 熊昌明, 魏仙君. 中国水稻抗旱研究进展. 作物研究, 2006(5): 426-430.
Li C Y, Xiong C M, Wei X J. Progress of China rice drought research. Crop Research, 2006(5): 426-430. (in Chinese)
[3]    张玉屏, 朱德峰, 林贤青, 陈慧哲, 张卫星. 不同灌溉方式对水稻需水量和生长的影响. 灌溉排水学报, 2007, 26(2): 83-85.
Zhang Y P, Zhu D F, Lin X Q, Chen H Z, Zhang W X. Effects of different irrigation methods on water demand and growth of rice. Journal of Irrigation and Drainage, 2007, 26(2): 83-85. (in Chinese)
[4]    王成瑷, 王伯伦, 张文香, 赵磊, 赵秀哲, 高连文. 土壤水分胁迫对水稻产量和品质的影响. 作物学报, 2006, 32(1): 131-137.
Wang C A, Wang B L, Zhang W X, Zhao L, Zhao X Z, Gao L W. Effects of water stress of soil on rice yield and quality. Acta Agronomica Sinica, 2006, 32(1): 131-137.(in Chinese)
[5]    阮英慧, 董守坤, 刘丽君, 孙聪姝, 王立彬, 郭茜茜, 盖志佳. 干旱胁迫下外源脱落酸对大豆花期生理特性的影响. 大豆科学, 2012, 31(3): 385-389.
Ruan Y H, Dong S K, Liu L J, Sun C S, Wang L B, Guo Q Q, Gai Z J. Effects of exogenous abscisic acid on physiological characteristics in soybean flowering under drought stress. Soybean Science, 2012, 31(3): 385-389. (in Chinese)
[6]    郝格格, 孙忠富, 张录强, 杜克明. 脱落酸在植物逆境胁迫研究中的进展. 中国农学通报, 2009, 25 (18): 212-215.
Hao G G, Sun Z F, Zhang L Q, Du K M. A research overview the plant resistance to adverse environment by using abscisic acid. Chinese Agricultural Science Bulletin, 2009, 25 (18): 212-215. (in Chinese)
[7]    Kano M, Inukai Y, Kitano H, Yamauchi A. Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant and Soil, 2011, 342 (1/2): 117-128.
[8]    李长宁, Manoj K S, 农倩, 李杨瑞. 水分胁迫下外源ABA提高甘蔗抗旱性的作用机制. 作物学报, 2010, 36 (5): 863-870.
Li C N, Manoj K S, Nong Q, Li Y R. Mechanism of tolerance to drought in sugarcane plant enhanced by foliage dressing of abscisic acid under water stress. Acta Agronomica Sinica, 2010, 36 (5): 863-870. (in Chinese)
[9]    姚满生, 杨小环, 郭平毅. 脱落酸与水分胁迫下棉花幼苗水分关系及保护酶活性的影响. 棉花学报, 2005, 17(3): 141-145.
Yao M S, Yang X H, Guo P Y. Effects of abscisic acid on water relationship and defensive enzymes activities in cotton seedling under water stress. Cotton Science, 2005, 17 (3): 141-145. (in Chinese)
[10]   阮英慧, 董守坤, 刘丽君, 孙聪姝, 王立彬, 郭茜茜, 盖志佳. 干旱胁迫下外源脱落酸对大豆花期生理特性的影响. 大豆科学, 2012, 31(3): 385-389.
Ruan Y H, Dong S K, Liu L J, Sun C S, Wang L B, Guo Q Q, Gai Z J. Effects of exogenous abscisic acid on physiological characteristics in soybean flowering under drought stress. Soybean Science,2012, 31(3): 385-389.(in Chinese)
[11]   Travaglia C, Cohen A C, Reinoso H, Castillo C, Bottini R. Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction. Journal of Plant Growth Regulation, 2007, 26(3): 285-289.
[12]   王玮, 张枫, 李德全. 外源ABA对渗透胁迫下玉米幼苗根系渗透调节的影响. 作物学报, 2002, 28(1): 121-126.
Wang W, Zhang F, Li D Q. The effects of exogenous ABA on osmotic adjustment in maize roots under osmotic stress. Acta Agronomica Sinica, 2002, 28 (1): 121-126. (in Chinese)
[13]   Souza T C, Magalhães P C, Castro E M, Albuquerque P E P, Marabesi M A. The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance. Acta Physiologiae Plantarum, 2013, 35(2): 515-527.
[14]   陈善娜, 郭浙红, 沈云光, 陈政权, 刘继梅, 罗亚丽. 在低温胁迫下外源ABA对高原水稻自由基清除系统的影响. 云南大学学报, 1996, 18 (2): 167-172.
Chen S N, Guo Z H, Shen Y G, Chen Z Q, Liu J M, Luo Y L. Effects of exogenous ABA on the plateau in free radical scavenging systems of rice under low temperature stress. Journal of Yunnan University, 1996, 18 (2): 167-172. (in Chinese)
[15]   刘春玲, 陈慧萍, 刘娥娥, 彭新湘, 卢少云, 郭振飞. 水稻品种对几种逆境的多重耐性及与ABA的关系. 作物学报, 2003, 5(29): 725-729.
Liu C L, Chen H P, Liu E E, Peng X X, Lu S Y, Guo Z F. Multiple tolerance of rice to abiotic stresses and its relationship with ABA accumulation. Acta Agronomica Sinica, 2003, 5 (29): 725-729. (in Chinese)
[16]   凌启鸿, 张洪程, 苏祖芳, 凌励. 稻作新理论. 北京: 科学出版社, 1994: 98-120.
Ling Q H, Zhang H C, Su Z F, Ling L. New Theories in Rice Production. Beijing: Science Press, 1994: 98-120. (in Chinese)
[17]   杨建昌, 刘凯, 张慎凤, 王学明, 王志琴, 刘立军. 水稻减数分裂期颖花中激素对水分胁迫的响应. 作物学报, 2008, 34(1): 111-118.
Yang J C, Liu K, Zhang S F, Wang X M, Wang Z Q, Liu L J. Hormones in rice spikelets in responses to water stress during meiosis. Acta Agronomica Sinica, 2008, 34(1): 111-118. (in Chinese)
[18]   Travaglia C, Reinoso H, Cohen A, Luna C, Tommasino E, Castillo C, Bottini R. Exogenous ABA increases yield in field-grown wheat with moderate water restriction. Journal of Plant Growth Regulation, 2010, 29(3): 366-374.
[19]   李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 184-185.
Li H S. Plant Physiology and Biochemistry Test Principles and Techniques. Beijing: High Education Press, 2000: 184-185. (in Chinese)
[20]   张宪政. 作物生理研究法. 北京: 中国农业出版社, 1992: 197-212.
Zhang Z X. Crop Physiology Research Methods. Beijing: China Agricultural Press, 1992: 197-212. (in Chinese)
[21]   王学奎. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2005: 170-173.
Wang X K. Plant Physiology and Biochemistry Test Principles and Techniques. Beijing: High Education Press, 2005: 170-173. (in Chinese)
[22]   王学奎. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2005: 280-281.
Wang X K. Plant Physiology and Biochemistry Test Principles and Techniques. Beijing: High Education Press, 2005: 280-281. (in Chinese)
[23]   王贺正, 马均, 李旭毅, 李艳, 张荣萍, 汪仁全. 水分胁迫对水稻结实期一些生理性状的影响. 作物学报, 2006, 32(12): 1892-1897.
Wang H Z, Ma J, Li X Y, Li Y, Zhang R P, Wang R Q. Effects of water stress on some physiological characteristics in rice during grain filling stage. Acta Agronomica Sinica, 2006, 32(12): 1892-1897. (in Chinese)
[24]   Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930.
[25]   杨建昌, 王志琴, 朱庆森. 水稻品种的抗旱性及其生理特性的研究. 中国农业科学, 1995, 28 (5): 65-72.
Yang J C, Wang Z Q, Zhu Q S. Research on drought resistance and physiological characteristics of rice varieties. Scientia Agricultura Sinica, 1995, 28 (5): 65-72. (in Chinese)
[26]   Ye N H, Zhu G H, Liu Y G, Li Y X, Zhang J H. ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant and Cell Physiology, 2011, 52: 689-698.
[27]   陈娟, 潘开文, 辜彬. 逆境胁迫下植物体内脱落酸的生理功能和作用机制. 植物生理学通讯, 2006, 42(6): 1176-1182.
Chen J, Pan K W, Gu B. Physiological function and mechanism of abscisic acid in plants under stress. Plant Physiology Journal, 2006, 42 (6): 1176-1182. (in Chinese)
[28]   于洋, 王晶英, 肖云鹏. 干旱与外源ABA交互作用对水曲柳苗木光合参数的影响. 东北林业大学学报, 2009, 37(3): 41-44.
Yu Y, Wang J Y, Xiao Y P. Effect of exogenous ABA on photosynthetic parameters of Fraxinus mandshurica under drought stress. Journal of Northeast Forestry University, 2009, 37 (3): 41-44. (in Chinese)
[29]   Liu F L, Jensen C R, Andersen M N. A review of drought adaptation in crop plants: changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Australian Journal of Agricultural Research, 2005, 56(11) :1245-1252.
[30]   Yin C Y, Duan B L, Wang X, Li C Y. Morphological and physiological responses of two contrasting poplar species to drought stress and exogenous abscisic acid application. Plant Science, 2004, 167(5): 1091-1097.
[31]   刘贞琦, 刘振业, 马达鹏, 曾淑芬. 水稻叶绿素含量及其与光合速率关系的研究. 作物学报, 1984, 10(1): 57-62.
Liu Z Q, Liu Z Y, Ma D P, Zeng S F. A study on the relation between chlorophyill content and photosynthetic rate of rice. Acta Agronomica Sinica, 1984, 10(1): 57-62. (in Chinese)
[32]   孟军, 陈温福, 徐正进, 李磊鑫, 周淑清. 水稻剑叶净光合速率与叶绿素含量的研究初报. 沈阳农业大学学报, 2011, 32(4): 247-249.
Meng J, Chen W F, Xu Z J, Li L X, Zhou S Q. Study on photosynthetic rate and chlorophyll content. Journal of Shenyang Agriculture University, 2011, 32(4): 247-249. (in Chinese)
[33]   Li C Y, Yin C Y, Liu S R. Different responses of two contrasting Populus davidiana populations to exogenous abscisic acid application. Environmental and Experimental Botany, 2004, 51(3): 237-246.
[34]   黄升, 邹应斌. 赤霉素和脱落酸对水稻籽粒灌浆及结实的影响. 安徽农业大学学报, 2006, 33 (3): 293-296.
Huang S M, Zou Y B. Relationship of gibberellin and abscisic acid with grains-filling and effects on setting. Journal of Anhui Agricultural University, 2006, 33 (3): 293-296. (in Chinese)
[35]   叶菀, 齐智伟, 李晓静, 饶玉春. 各种植物激素对水稻籽粒灌浆的影响及其机制. 安徽农业科学, 2013, 41(1): 9-11.
Li Y, Qi Z W, Li X J, Rao Y C. Influence and mechanism of each kind of plant hormones on rice grain filling. Journal of Anhui Agricultural University, 2013, 41(1): 9-11. (in Chinese)
[36]   杨建昌, 王志琴, 朱庆森, 苏宝林. ABA与GA对水稻籽粒灌浆的调控. 作物学报, 1999, 25(3): 341-348.
Yang J C, Wang Z Q, Zhu Q S, Su B L. Regulation of ABA and GA to the grain filling of rice. Acta Agronomica Sinica, 1999, 25(3): 341-348. (in Chinese)
[37]   张耗, 剧成欣, 陈婷婷, 曹转勤, 王志琴, 杨建昌. 节水灌溉对节水抗旱水稻品种产量的影响及生理基础. 中国农业科学, 2012, 45(23): 4782-4793.
Zhang H, Ju C X, Chen T T, Cao Z Q, Wang Z Q, Yang J C. Effect of water-saving irrigation on the grain yield of water-saving and drought-resistance rice and its physiological bases. Scientia Agricultura Sinica, 2012, 45(23): 4782-4793. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[4] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[5] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[8] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[9] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[10] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[11] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[12] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[13] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[14] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[15] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!