Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (21): 4211-4223.doi: 10.3864/j.issn.0578-1752.2014.21.007
• EFFICIENT, SAFE AND LARGE-SCALE TRANSGENIC TECHNOLOGY: OPPORTUNITIES AND CHALLENGES • Previous Articles Next Articles
MU Yu-lian, RUAN Jin-xue, WU Tian-wen, CHENG Ying, WEI Jing-liang, FAN Jun-hua, LI Kui
[1] 罗庆苗, 苗向阳, 张瑞杰. 转基因动物新技术研究进展. 遗传, 2011, 33(5): 449-458.
Luo Q M, Miao X Y, Zhang R J. An update on the development of transgenic animal technology. Hereditas, 2011, 33(5): 499-458. (in Chinese)
[2] 余大为, 朱化彬, 杜卫华. 家畜转基因育种研究进展. 遗传, 2011, 33(5): 459-468.
Yu D W, Zhu H B, Du W H. Advances of transgenic breeding in livestock. Hereditas, 2011, 33(5): 459-468. (in Chinese)
[3] 王振华. 中国从养猪大国走向养猪强国的探索之路. 养殖与饲料, 2013, 7: 1-10.
Wang Z H. The explore road from pig big country to pig power of China. Farming and Feed, 2013, 7: 1-10. (in Chinese)
[4] 魏景亮, 吴添文, 阮进学, 牟玉莲. 基因组编辑技术改良家畜的研究进展. 中国农业科技导报, 2014, 16(1): 32-38.
Wei J L, Wu T W, Ruan J X, Mu Y L. Advance in genome editing technologies for livestock improvement. Journal of Agricultural Science and Technology, 2014, 16(1): 32-38. (in Chinese)
[5] 卜友泉, 杨正梅, 宋方洲. 新基因功能研究的策略与方法. 生命科学研究, 2006, 10(2):95-98.
Bu Y Q, Yang Z M, Song F Z. Strategies and methods in functional analysis of novel genes. Live Science Research, 2006, 10(2): 95-98. (in Chinese)
[6] Fang X D, Mu Y L, Huang Z Y, Li Y, Han L J, Zhang Y F, Feng Y, Chen Y X, Jiang X T, Zhao W, Sun X Q, Xiong Z Q, Yang L, Liu H, Fan D D, Mao L K, Ren L J,. Liu C X, Wang J, Li K, Wang G B, Yang S L, Lai L X, Zhang G J, Li Y R, Wang J, Bolund L, Yang H M, Wang J, Feng S T, Li S G, Du Y T. The sequence and analysis of a Chinese pig genome. Giga Science, 2012, 1(1): 16.
[7] Hammer R E, Pursel V G, Rexroad C E, Wall R J, Bolt D J, Ebert K M, Palmiter R D, Brinster R L. Production of transgenic rabbits, sheep and pig by icroinjection. Nature, 1985, 315(6021): 680-683.
[8] Brem G, Brenig B, Muller M, Krausslich H, Winnacker E l. Production of transgenic pigs and possible application to pig breeding. BSAP Occasionalication:an Occasionalication of the British Society of Animal Production, 1988, 12: 15-31.
[9] Pursel V G Pinkert C A, Miller K F, Bolt D J, Campbell R G, Palmiter R D, Brinster R L, Hammer R E. Genetic engineering of livestock. Science, 1989, 244(4910): 1281-1288.
[10] Vize P D, Michalska A E, Ashman R, Lloyd B, Stone B A, Quinn P, Wells J R, Seamark R F. Introduction of a porcine growth hormone fusion gene into transgenic pigs promotes growth. Jourcal of Cell Science, 1988, 90(2): 295-300.
[11] Müller M, Brenig B, Winnacker E L, Brem G. Transgenic pigs carrying cDNA copies encoding the murine Mx1 protein which confers resistance to influenza virus infection. Gene 1992, 121(2): 263-270.,
[12] Saeki K, Matsumoto K, Kinoshita M, Suzuki I, Tasaka Y, Kano K, Taguchi Y, Mikami K, Hirabayashi M, Kashiwazaki N, Hosoi Y, Murata N, Iritani A. Functional expression of a Deltal2 faty acid desaturse gene from spinach in transgenic pigs. Proceedings of the National Academy of Sciences of the USA, 2004, 101(17): 6361-6366.
[13] Golovan S P, Meidinger R G, Ajakaiye A, Cottrill M, Wiederkehr M Z, Barney D J, Plante C, Pollard J W, Fan M Z, Hayes M A, Laursen J, Hjorth J P, Hacker R R, Phillips J P, Forsberg C W. Pigs expressing salivary phytase produce low-phosphorus manure. Nature Biotechnology, 2001, 19(8): 741-745.
[14] Rosengard A M. Tissue expression of human complement inhibitor, decay accelerating factor, in transgenic pigs:a potential approach for preventing xenograft rejection. Transplantation, 1995, 59(9): 1325-1333.
[15] Swanson M E, Martin M J, O'Donnell J K, Hoover K, Lago W, Huntress V, Parsons C T, Pinkert C A, Pilder S, Logan J S. Production of functional human hemoglobin in transgenic swine. Biotechnology (N Y), 1992, 10(5): 557-559.
[16] Park J K, Lee Y K. Recombinant human erythropoietin produced in milk of transgenic pigs. Journal of Biotechnology, 2006, 122(3): 362-371.
[17] 魏庆信, 樊俊华, 陈东宝, 李绍章, 胡宏宇, 华文君, 王羽中. 湖北白猪导人生长激素基因的整合, 表达和遗传. 华中农业大学学报,1993(6): 606-611.
Wei Q X, Fan J H, Chen D B, Li S Z, Hu H Y, Hua W J, Wang Y Z. Integration,expression and heredity of Mot/pGH gene transferred into Hubei white pigs. Journal of Huazhong Agricultural University, 1993(6): 606-611. (in Chinese)
[18] 魏庆信, 乔宪凤. 转基因猪研究的回顾及今后发展方略之我见. 湖北农业科学, 2008, 47(12): 1509-1513.
Wei Q X, Qiao X F. Review and the development strategy on transgenic swine. Hubei Agricultural Sciences, 2008, 47(12): 1509-1513. (in Chinese)
[19] Brinster R L, Allen J M, Behringer R R, Gelinas R E, Palmiter R D.Introns increase transcriptional efficiency in transgenic mice. Proceedings of the National Academy of Sciences of the USA, 1988, 85: 836-840.
[20] Kubisch H M, Larson M A, Funahashi H, Day B N, Roberts R M. Pronuclear visibility, development and transgene expression in IVM/IVF-derived porcine embryos. Theriogenology, 1995, 44: 391.
[21] Wilmut I, Schnieke A E, McWhir J, Kind A J, Campbell K H.Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810-813.
[22] Polejaeva I A, Chen S H, Vaught T D, Page R L, Mullins J, Ball S, Dai Y, Boone J, Walker S, Ayares D L, Colman A, Campbell K H. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 2000, 407(6800): 86-90.
[23] Betthauser J, Forsberg E, Augenstein M, Childs L, EilertsenK, Enos J, Forsythe T, GoluekeP, JurgellaG, KoppangR, Lesmeister T, Mallon K, MellG, MisicaP, Pace M, Genskow M P, StrelchenkoN, VoelkerG, WattS, ThompsonS, Bishop M. Production ofcloned pigs from in vitro systems. Nature Biotechnology, 2000, 18: 1055-1099.
[24] Park K W, Cheong H T, Lai L, Im G S, Kühholzer B, Bonk A, Samuel M, Rieke A, Day B N, Murphy C N, Carter D B, Prather R S. Production of nuclear tmmfer-derived swine that express the enhanced green fluorescent protein. Anita Biotechnology, 2001, 12(2):173-181.
[25] Chung J, Zhang X, Colins B, Howard K, Simpson S, Salmon C, Koh S, Sper R, Byrd C, Piedrahita J. 5 disruption of the high mobility group at-hook 2 (hmga2) gene in Swine reduces postnatal growth. Reproduction Fertility Development, 2013, 26(1): 117.
[26] Lai L, Kang J X, Witt W, Wang J, Yong H Y, Hao Y, Wax D M, Li R, Evans R, Starzl T E, Prather R S, Dai Y. Cloned fat-1 transgenic pigs rich in omega-3 fatty acids. Nature Biotechnology, 2006, 24: 435-436.
[27] Lai L, Kolber-Simonds D, Park K W, Cheong H T, Greenstein J L, Im G S, Samuel M, Bonk A, Rieke A, Day B N, Murphy C N, Carter D B, Hawley R J, Prather R S. Production of alpha-1,3- galactosyltransferase knockout pigs by nuclear transfer coning. Science, 2002, 295: 1089-1092.
[28] Ramsoondar J J, Machaty Z, Costa C, Williams B L, FodorW L, Bondioli K R. Production of α1,3-galactosyl-transferase-knockout cloned pigs expressing humanα1,2-fucosylosyltransferase. Biology of Reproduction, 2003, 69: 437-445.
[29] Zeyland J, Gawrońska B, Juzwa W, Jura J, Nowak A, S?omski R, Smor?g Z, Szalata M, Wo?niak A, Lipiński D.Transgenic pigs designed to express human alpha-galactosidase to avoid humoral xenograft rejection. Journal of Applied Genetics, 2013, 54(3): 293-303.
[30] Lee H J, Lee B C, Kim Y H, Paik N W, Rho H M. Characterization of transgenic pigs that express human decay accelerating factor and cell membrane-tethered human tissue factor pathway inhibitor. Reproduction Fertility Development, 2011, 46(2): 325-332.
[31] Ramsoondar J, Vaught T, Ball S, Mendicino M, Monahan J, Jobst P, Vance A, Duncan J, Wells K, Ayares D.Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation, 2009, 16(3): 164-180.
[32] Klymiuk N, van Buerck L, Bähr A, Offers M, Kessler B, Wuensch A, Kurome M, Thormann M, Lochner K, Nagashima H, Herbach N, Wanke R, Seissler J, Wolf E.Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes, 2012, 61(6): 1527-1532.
[33] Kemter E, Lieke T, Kessler B, Kurome M, Wuensch A, Summerfield A, Ayares D, Nagashima H, Baars W, Schwinzer R, Wolf E. Human TNF-related apoptosis-inducing ligand-expressing dendritic cells from transgenic pigs attenuate human xenogeneic T cell responses. Xenotransplantation, 2012, 19(1): 40-51.
[34] Hara H, Witt W, Crossley T, Long C, Isse K, Fan L, Phelps C J, Ayares D, Cooper D K, Dai Y, Starzl T E.Human dominant-negative class II transactivator transgenic pigs - effect on the human anti-pig T-cell immune response and immune status. Immunology, 2013, 140(1): 39-46.
[35] Yoo J Y, Choi K M, Hong S P, Kim S H, Park K W, Seol J G. Inhibition of swine leukocyte antigen-I presentation in transgenic mini-pig cell lines by expressing human cytomegalovirus US6. Transplanationt Proceedings, 2010, 42(10): 4648-4650.
[36] Yeom H J, Koo O J, Yang J, Cho B, Hwang J I, Park S J, Hurh S, Kim H, Lee E M, Ro H, Kang J T, Kim S J, Won J K, O'Connell P J, Kim H, Surh C D, Lee B C, Ahn C.Generation and characterization of human heme oxygenase-1 transgenic pigs. PLoS One, 2012, 7(10): e46646.
[37] Staunstrup N H, Madsen J, Primo M N, Li J, Liu Y, Kragh P M, Li R, Schmidt M, Purup S, Dagnæs-Hansen F, Svensson L, Petersen T K, Callesen H, Bolund L, Mikkelsen J G.Development of transgenic cloned pig models of skin inflammation by DNA transposon-directed ectopic expression of human beta1 and alpha2 integrin. PLoS One, 2012, 7(5): e36658.
[38] Phelps C J, Ball S F, Vaught T D, Vance A M, Mendicino M, Monahan J A, Walters A H, Wells K D, Dandro A S, Ramsoondar J J, Cooper D K, Ayares D L. Production and characterization of transgenic pigs expressing porcine CTLA4-Ig. Xenotransplantation, 2009, 16(6): 477-485.
[39] Oropeza M, Petersen B, Carnwath J W, Lucas-Hahn A, Lemme E, Hassel P, Herrmann D, Barg-Kues B, Holler S, Queisser A L, Schwinzer R, Hinkel R, Kupatt C, Niemann H.Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation, 2009, 16(6): 522-534.
[40] Whyte J J, Samuel M, Mahan E, Padilla J, Simmons G H, Arce-Esquivel A A, Bender S B, Whitworth K M, Hao Y H, Murphy C N, Walters E M, Prather R S, Laughlin M H.Vascular endothelium- specific overexpression of human catalase in cloned pigs. Transgenic Research, 2011, 20(5): 989-1001.
[41] Whyte J J, Samuel M, Mahan E, Padilla J, Simmons G H, Arce-Esquivel A A, Bender SB, Whitworth KM, Hao Y H, Murphy C N, Walters E M, Prather R S, Laughlin M H. Vascular endothelium- speci?c overexpression of human catalase in cloned pigs. Transgenic Research, 2011, 20: 989-1001.
[42] Hao Y H, Yong H Y, Murphy C N, Wax D, Samuel M, Rieke A, Lai L, Liu Z, Durtschi D C, Welbern V R, Price E M, McAllister R M, Turk J R, Laughlin M H, Prather R S, Rucker E B.Production ofendothelial nitric oxide synthase (eNOS) over-expressing piglets. Transgenic Research, 2006, 15: 739-750.
[43] Wei J, Ouyang H, Wang Y, Pang D, Cong N X, Wang T, Leng B, Li D, Li X, Wu R, Ding Y, Gao F, Deng Y, Liu B, Li Z, Lai L, Feng H, Liu G, Deng X. Characterization of a hyper-triglyceridemic transgenic miniature pig model expressing human apoli-poprotein CIII. FEBS Journal, 2012, 279: 91-99.
[44] Umeyama K, Watanabe M, Saito H, Kurome M, Tohi S, Matsunari H, Miki K, Nagashima H. Dominant-negativemutant hepatocyte nuclear factor 1alpha induces diabetes intransgenic-cloned pigs. Transgenic Research, 2009, 18: 697-706.
[45] Renner S, Fehlings C, Herbach N, Hofmann A, von Waldthausen D C, Kessler B, Ulrichs K, Chodnevskaja I, Moskalenko V, Amselgruber W, Göke B, Pfeifer A, Wanke R, Wolf E.Glucose intolerance and reduced proliferation of pancreatic beta-cells intransgenic pigs with impaired glucose-dependent insulinotropic poly-peptide function. Diabetes, 2010, 59: 1228-1238.
[46] Labrecque B, Beaudry D, Mayhue M, Hallé C, Bordignon V, Murphy B D, Palin M F. Molecular characterization and expression analysis of the porcine paraoxonase 3 (PON3) gene. Gene, 2009, 443(1/2): 110-120.
[47] Jeon Y, Kim Y K, Yoon J D, Cai L, Hwang S U, Kim E. Production of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) over-expressed pigs for the study of metabolic syndrome disease. Reproduction Fertility Development, 26(1):116.
[48] Renner S, Braun-Reichhart C, Blutke A, Herbach N, Emrich D, Streckel E, Wünsch A, Kessler B, Kurome M, Bähr A, Klymiuk N, Krebs S, Puk O, Nagashima H, Graw J, Blum H, Wanke R, Wolf E. Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes, 2013, 62(5): 1505-1511.
[49] Uchida M, Shimatsu Y, Onoe K, Matsuyama N, Niki R, Ikeda J E, Imai H. Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Research, 2001, 10: 577-582.
[50] Hedegaard C, Kjaer-Sorensen K, Madsen LB, Henriksen C, Momeni J, Bendixen C, Oxvig C, Larsen K. Porcine synapsin 1: SYN1 gene analysis and functional characterization of the promoter. FEBS Open Bio, 2013, 3: 411-420.
[51] Sommer J R, Estrada J L, Collins E B, Bedell M, Alexander C A, Yang Z, Hughes G, Mir B, Gilger B C, Grob S, Wei X, Piedrahita J A, Shaw P X, Petters R M, Zhang K. Production of ELOVL4 transgenic pigs: a large animal model for Stargardt-like macular degeneration. British Journal of Ophthalmology, 2011, 95(12): 1749-1754.
[52] Ross J W, Fernandez de Castro J P, Zhao J, Samuel M, Walters E, Rios C, Bray-Ward P, Jones B W, Marc R E, Wang W, Zhou L, Noel J M, McCall M A, DeMarco P J, Prather R S, Kaplan H J.Generation of an inbred miniature pig model of retinitis pigmentosa. Investigative Ophthalmology and Visual Science, 2012, 53(1): 501-507.
[53] Petters R M, Alexander C A, Wells K D, Collins E B, Sommer J R, Blanton M R, Rojas G, Hao Y, Flowers W L, Banin E, Cideciyan A V, Jacobson S G, Wong F. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nature Biotechnology, 1997, 15: 965-970.
[54] Li Y, Ganta S, Fong P. Endogenous surface expression of DeltaF508- CFTR mediates cAMP-stimulated Cl(-) current in CFTR(DeltaF508/ DeltaF508) pig thyroid epithelial cells. Experimental Physiology, 2012, 97(1): 115-124.
[55] Rogers C S, Hao Y, Rokhlina T, Samuel M, Stoltz D A, Li Y, Petroff E, Vermeer D W, Kabel A C, Yan Z, Spate L, Wax D, Murphy C N, Rieke A, Whitworth K, Linville M L, Korte S W, Engelhardt J F, Welsh M J, Prather R S. Productionof CFTR-null and CFTR- DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nucleartransfer. Journal of Clinical Investigation, 2008, 118: 1571-1577.
[56] Kragh P M, Nielsen A L, Li J, Du Y, Lin L, Schmidt M, Bøgh I B, Holm I E, Jakobsen J E, Johansen M G, Purup S, Bolund L, Vajta G, Jørgensen A L. Hemizygousminipigs produced by random gene insertion and handmadecloning express the Alzheimer’s disease- causing dominant mutationAPPsw. Transgenic Research, 2009, 18: 545-558.
[57] 潘登科. 我国转基因猪的研究进展. 猪业科学, 2011, 28(8): 50-51.
Pan D K. The progress of transgenic pig of China. Swine Industry Science, 2011, 28(8): 50-51. (in Chinese)
[58] 刘岩, 童佳, 张然, 汤波, 彭云乾, 王淑辉, 李宁. 转基因动物育种研究的现状与趋势. 中国医药生物技术, 2009, 4(5): 329-334.
Liu Y, Tong J, Zhang R, Tang B, Peng YQ, Wang S H, Li N. Current status and tendency of improving livestock of transgenic breeding in livestock . Chinese Medicinal Biotechnology, 2009, 4(5): 329-334. (in Chinese)
[59] Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, Xiao L. Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology, 2009, 1(1): 46-54.
[60] Yang D, Wang C E, Zhao B, Li W, Ouyang Z, Liu Z, Yang H, Fan P, O'Neill A, Gu W, Yi H, Li S, Lai L, Li X J. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Human Molecular Genetics, 2010, 19(20): 3983-3994.
[61] 关立增. 组织特异性表达1, 3-1, 4-β-葡聚糖酶转基因鼠及猪的制备[D]. 吉林大学, 2013.
Guan L Z. Production of transgenic mice and pigs tissue-specifically expressing 1, 3-1, 4-β-glucanase[D]. Jilin University, 2013. (in Chinese)
[62] 樊娜娜, 杨东山, 赖良学. 转基因克隆猪研究进展. 第九届中国实验动物科学年会, 2010.
Fan N N, Yang D S, Lai L X. The applications of nuclear transfer technology in production of tansgenic pigs. Ninth Laboratory Animal Science Annual Meeting of China, 2010. (in Chinese)
[63] Kim Y G, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the USA, 1996, 93(3): 1156-1160.
[64] Zhang F, Maeder M L, Unger-Wallace E, Hoshaw J P, Reyon D, Christian M, Li X, Pierick C J, Dobbs D, Peterson T, Joung J K, Voytas D F. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proceedings of the National Academy of Sciences of the USA, 2010, 107(26): 12028-12033.
[65] Meng X, Noyes M B, Zhu L J, Lawson N D, Wolfe S A.Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature Biotechnology, 2008, 26(6): 695-701.
[66] Doyon Y, McCammon J M, Miller J C, Faraji F, Ngo C, Katibah G E, Amora R, Hocking T D, Zhang L, Rebar E J, Gregory P D, Urnov F D, Amacher S L. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26(6): 702-708.
[67] Cui X, Ji D, Fisher D A, Wu Y, Briner D M, Weinstein E J. Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nature Biotechnology, 2010, 29(1): 64-67.
[68] Moehle E A, Rock J M, Lee Y L, Jouvenot Y, DeKelver R C, Gregory P D, Urnov F D, Holmes M C. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proceedings of the National Academy of Sciences of the USA, 2007, 104(9): 3055-3060.
[69] Christian M, Cermak T, Doyle E L, Schmidt C, Zhang F, Hummel A, Bogdanove A J, Voytas D F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186(2): 757-761.
[70] Bedell V M, Wang Y, Campbell J M, Poshusta T L, Starker C G, Krug R G, Tan W, Penheiter S G, Ma A C, Leung A Y, Fahrenkrug S C, Carlson D F, Voytas D F, Clark K J, Essner J J, Ekker S C. In vivo genome editing using a high-efficiency TALEN system. Nature, 2012, 491(7422): 114-118.
[71] Sander J D, Cade L, Khayter C, Reyon D, Peterson R T, Joung J K, Yeh J R. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnology, 2011, 29(8): 697.
[72] Liu J, Li C, Yu Z, Huang P, Wu H, Wei C, Zhu N, Shen Y, Chen Y, Zhang B, Deng W M, Jiao R.Efficient and specific modifications of the drosophila genome by means of an easy TALEN strategy. Journal of Genetics and Genomics, 2012, 39(5): 209-215.
[73] Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife, 2013, 2:e00471.
[74] Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326(5959): 1501-1501.
[75] Miller J C, Tan S, Qiao G, Barlow K A, Wang J, Xia D F, Meng X, Paschon D E, Leung E, Hinkley S J, Dulay G P, Hua K L, Ankoudinova I, Cost G J, Urnov F D, Zhang H S, Holmes M C, Zhang L, Gregory P D, Rebar E J. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 2010, 29(2): 143-148.
[76] Lillestøl R K, Redder P, Garrett R A, Brügger K. A putative viral defence mechanism in archaeal cells. Archaea, 2006, 2(1): 59-72.
[77] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero D A, Horvath P. Crispr provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712.
[78] Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
[79] Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M.RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
[80] Cho S W, Kim S, Kim J M, Kim J S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31: 230-232.
[81] Hwang W Y, Fu Y, Reyon D, Maeder M L, Tsai S Q, Sander J D, Peterson R T, Yeh J R, Joung J K. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(3): 227-229.
[82] Hauschild J, Petersen B, Santiago Y, Queisser A L, Carnwath J W , Hahn A L, Zhang L, Meng X D, Gregory P D, Schwinzer R, Cost G J, Niemann H. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proceedings of the National Academy of Sciences of the USA, 2011, 108(29): 12013-12017.
[83] Carlson D F, Tan W, Lillico S G, Stverakova D, Proudfoot C, Christian M, VoytasD F, Long C R, Whitelaw C B A, Fahrenkrug S C. Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the USA, 2012, 109(43): 17382-17387.
[84] Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen Y E, Lai L. Generation of PPARgamma mono-allelic knockout pigs via zinc- ?nger nucleases and nuclear transfer cloning. Cell Research, 2011, 21, 979-982.
[85] Li X P, Yang Y, Bu L, Guo X G, Tang C C, Song J, Fan N N, Zhao B T, Ouyang Z, Liu Z M, Zhao Y, Yi X Y, Quan L Q, Liu S C, Yang Z G, Ouyang H S, Y Eugene Chen, Wang Z, Lai L X. Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Research, 2014(2): 1-4.
[86] Hai T, Teng F, Guo R F, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Research, 2014(1): 1-4.
[87] Sperandio S, Lulli V, Bacci M L, Forniac M, Maionea B, Spadaforaab C, Lavitranoabd M. Sperm-mediated DNA transfer in bovine and swine species. Animal Biotechno1ogy, 1996(7): 59-77.
[88] Lavitrano M, Forni M, Bacci M L, Di Stefano C, Varzi V, Wang H, Seren E. Sperm mediated gene transfer in pig:selection of donor boars and optimization of DNA uptake. Molecular Reproduction and Development, 2003, 64: 284-291.
[89] Webster N L, Forni M, Bacci M L, Giovannoni R, Razzini R, Fantinati P, Zannoni A, Fusetti L, Dalprà L, Bianco M R, Papa M, Seren E, Sandrin M S, Mc Kenzie I F, Lavitrano M. Multi-transgenic pigs expressing three fluorescent proteins produced with high efficiency by sperm mediated gene transfer. Molecular Reproduction and Development, 2005, 72: 68-76.
[90] Manzini S, Vargiolu A, Stehle I M, Bacci M L, Cerrito M G, Giovannoni R, Zannoni A, Bianco M R, Forni M, Donini P, Papa M, Lipps H J, Lavitrano M. Genetically modified pigs produced with a nonviral episomal vector. Proceedings of the National Academy of Sciences of the USA. 2006, 103(47): 17672-17677.
[91] 黄俊成. 转基因猪的研究进展. 生物技术通报, 1997(6): 5-8. Huang J C. The progress of transgenic swine. Biotechnology Bulletin, 1997(6): 5-8. (in Chinese)
[92] 肖红卫, 郑新民, 陈思怀, 乔宪凤, 谷习文, 田永祥, 张涌, 魏庆 信. 精子介导生产转hCD59 基因猪. 华中农业大学学报, 2006, 25(2): 170-173. Xiao H W, Zheng X M, Chen S H, Qiao X F, Gu X W, Tian Y X, Zhang Y, Wei Q X. Sperm-mediated gene transfer to produce hCD59 transgenic porcine. Journal of Huazhong Agricultural University, 2006, 25(2): 170-173. (in Chinese)
[93] 吴斌, 戴建军, 张廷宇, 张树山, 吴彩凤, 顾晓龙, 陈会兰, 张德福. 精子载体法获得植酸酶转基因猪. 上海农业学报, 2013, 29(5): 6-9.
Wu B, Dai J J, Zhang T Y, Zhang S S, Wu C F, Gu X L, Chen H L, Zhang D F. Production of transgenic pigs with phytase gene by sperm-mediated gene transfer. Acta Agriculturae Shanghai, 2013, 29(5): 6-9. (in Chinese)
[94] Cabot R A, Kühholzer B, Chan AW, Lai L, Park K W, Chong K Y, Schatten G, Murphy C N, Abeydeera L R, Day B N, Prather R S. Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Animal Biotechnology, 2001, 12(2): 205-214.
[95] Lai L, Park K W, Cheong H T, Kühholzer B, Samuel M, Bonk A, Im G S, Rieke A, Day B N, Murphy C N, Carter D B, Prather R S. Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Molecular Reproduction and Development, 2002, 62(3): 300-306.
[96] Zhang Y, Xi Q Y, Ding J H, Cai W G, Meng F M, Zhou J Y, Li H Y, Jiang Q Y, Shu G, Wang S O, Zhu X T, Gao P, Wu Z F. Production of transgenic pigs mediated by pseudotyped lentivirus and sperm. PLoS One, 2012, 7(4): e35335.
[97] Deng W, Yang D S, Zhao B T, Ouyang Z, Song J, Fan N N, Liu Z M, Zhao Y, Wu Q H, Nashun B, Tang J J, Wu Z F, Gu W W, Lai L X. Use of the 2A peptide for generation of multi-transgenic pigs through a single round of nuclear transfer. PLoS One, 2011, 6(5): e19986. |
[1] | TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138. |
[2] | CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768. |
[3] | MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663. |
[4] | YANG ShiQi. Thought of Pollution Comprehensive Prevention and Control System of Non-Point Sources Based on National Food Security [J]. Scientia Agricultura Sinica, 2022, 55(17): 3380-3394. |
[5] | YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449. |
[6] | DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255. |
[7] | JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359. |
[8] | HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301. |
[9] | TANG ZhenShuang,YIN Dong,YIN LiLin,MA YunLong,XIANG Tao,ZHU MengJin,YU Mei,LIU XiaoLei,LI XinYun,QIU XiaoTian,ZHAO ShuHong. To Evaluate the “Two-Step” Genomic Selection Strategy in Pig by Simulation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684. |
[10] | ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465. |
[11] | SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997. |
[12] | DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342. |
[13] | YU ZhengWang,ZHOU ZhongXin. Functions of Antibacterial and Inducing Defense Peptide Expression of Medium-Chain Fatty Acid and Its Application in Piglet Feeds [J]. Scientia Agricultura Sinica, 2021, 54(13): 2895-2905. |
[14] | Lei QIAO,WuPing ZHANG,MingJing HUANG,GuoFang WANG,Jian REN. Mapping of Soil Organic Matter and Its Driving Factors Study Based on MGWRK [J]. Scientia Agricultura Sinica, 2020, 53(9): 1830-1844. |
[15] | QIN BenYuan,YANG Yang,ZHANG YanWei,LIU Min,ZHANG WanFeng,WANG HaiZhen,WU YiQi,ZHANG XueLian,CAI ChunBo,GAO PengFei,GUO XiaoHong,LI BuGao,CAO GuoQing. Isolation, Culture, Identification and Biological Characteristics of Pig Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(8): 1664-1676. |
|