Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (18): 3523-3533.doi: 10.3864/j.issn.0578-1752.2014.18.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Advances in Research of Transcriptional Regulatory Network in Response to Cold Stress in Plants

LIU Hui, LI De-jun, DENG Zhi   

  1. Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources  of Rubber Tree, Ministry of Agriculture, Danzhou 571737, Hainan
  • Received:2014-03-12 Revised:2014-05-28 Online:2014-09-16 Published:2014-09-16

Abstract: Cold stress seriously influences plant growth, development, and crop yield. In order to survive, plants have evolved complex and high-efficiency regulatory networks to respond and adapt to cold stress. Among these regulatory networks, transcriptional regulation plays crucial roles. Transcription factors can regulate a set of genes by binding to cis-acting regulatory elements in the promoter regions, and play crucial roles in abiotic stress-responsive transcriptional regulatory network in plants. In this review, the authors comprehensively summarized the transcription factors involved in regulating plant response to cold stress, including AP2/ERF (APETALA2/ethylene responsive factor), MYB (myeloblastosis), bHLH (basic helix-loop-helix), NAC (NAM, ATAF1, ATAF2 and CUC2), ZFP (zinc finger protein), WRKY, VOZ (vascular plant one zinc-finger protein), CAMTA (calmodulin-binding transcription activator), and EIN3 (ethylene-insensitive 3). Their structure characteristics were simply summarized, while their functions and regulatory mechanisms were emphatically introduced. Based on the relationships among transcription factors, a transcriptional regulatory network diagram of plant response to cold stress was draw. In this network, CBF (C-repeat binding factor) transcription factors are considered as master molecular switches. CBFs specifically bind to the DRE/CRT (dehydration-responsive element/C-repeat element, A/GCCGAC) cis-acting regulatory element of the promoter region of the cold-responsive genes, such as COR (cold regulated), LTI (low-temperature induced), DHN (dehydrin), RD (responsive to dehydration), etc, and activate their expression. The expression of CBFs are positively regulated by ICE1/2 (inducer of CBF expression 1/2), CAA1 (circadian clock-associated 1), LHY (late elongated hypocotyl), MYB56, ZFP1/182, and CAMTA1/2/3, whereas negatively regulated by MYB15, MYBS3, ZAT12, PIF4/7, WRKY34, and EIN3. The transcriptional activity of ICE1 protein is strictly regulated by post-translational modification, including SIZ1 (SAP and Miz 1)-mediated SUMO (small ubiquitin-related modifier) modification and HOS1 (high expression of osmotically responsive gene 1)-mediated ubiquitination. The HOS1–SIZ1 system strictly regulates and perfectly fine-tunes the expressions of ICE1–CBFs and their targets to cope with temperature change. Moreover, the expression of ICE1 is negatively regulated by JAZ1/4 and positively regulated by ERF2. Except the CBF-dependent cold-response pathway, some transcription factors regulate responses of plant to cold stress through CBF-independent pathways, such as JERF3, MYB2/4/96/3R-2, WRKY19/21/76, NAC1/2, SAP1/8, etc. Uncovering transcriptional regulatory network in response to cold stress in plants provide a theoretical basis for improving the cold tolerance of crops through transgenic technology. Transgenic studies indicate that some transcription factors possess potential usefulness in genetic improvement of cold stress tolerance in plants, such as AtCBF1AtCBF3, AtICE1, AtCCA1α, TaCBF14/15, TaNAC2, TaWRKY19, VrCBF1/4, MdCIbHLH1, PtrbHLH, OsMYB2, GmNAC20, JERF3, and ZFP182. Furthermore, the main problems in current researches and the key points in future studies were also proposed, in hope of providing reference for further revealing the molecular mechanisms underlying plant adaptation to cold stress.

Key words: plant, cold stress, cold tolerance, transcription factor, transcriptional regulation

[1] 李红霞, 汪妤, 张战凤, 彭惠茹, 倪中福. 植物转录因子与作物抗逆胁迫关系的研究进展. 麦类作物学报, 2013, 33(3): 613-618.
Li H X, Wang Y, Zhang Z F, Peng H R, Ni Z F. Progress in relationship between plant transcription factors and crop stress tolerance. Journal of Triticeae Crops. 2013, 33(3): 613-618. (in Chinese)
[2] Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 2012, 1819(2): 86-96.
[3] 张计育, 王庆菊, 郭忠仁. 植物AP2/ERF 类转录因子研究进展. 遗传, 2012, 34(7): 835-847.
Zhang J Y, Wang Q J, Guo Z R. Progresses on plant AP2/ERF transcription factors. Hereditas, 2012, 34(7): 835-847. (in Chinese)
[4] Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene responsive factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytologist, 2013, 199(3): 639-649.
[5] Chinnusamy V, Zhu J, Zhu J K. Cold stress regulation of gene expression in plants. Trends in Plant Science, 2007, 12(10): 444-451.
[6] Zhou M Q, Shen C, Wu L H, Tang K X, Lin J. CBF-dependent signaling pathway: A key responder to low temperature stress in plants. Critical Reviews in Biotechnology, 2011, 31: 186-192.
[7] Tsutsui T, Kato W, Asada Y, Sako K, Sato T, Sonoda Y, Kidokoro S, Yamaguchi-Shinozaki K, Tamaoki M, Arakawa K, Ichikawa T, Nakazawa M, Seki M, Shinozaki K, Matsui M, Ikeda A, Yamaguchi J. DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. Journal of Plant Research, 2009, 122(6): 633-643.
[8] Dong C J, Liu J Y. The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biology, 2010, 10: 47.
[9] Siddiqua M, Nassuth A. Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant Cell Environment, 2011, 34(8): 1345-1359.
[10] Soltesz A, Smedley M, Vashegyi I, Galiba G, Harwood W, Vagujfalvi A. Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. Journal of Experimental Botany, 2013, 64(7): 1849-1862.
[11] Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Molecular Biology, 2010, 73(3): 241-249.
[12] Tian Y, Zhang H, Pan X, Chen X, Zhang Z, Lu X, Huang R. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Research, 2011, 20(4): 857-866.
[13] Wu L, Zhang Z, Zhang H, Wang X C, Huang R. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiology, 2008, 148(4): 1953-1963.
[14] Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 2011, 66(1): 94-116.
[15] Agarwal M, Hao Y, Kapoor A, Dong C H, Fujii H, Zheng X, Zhu J K. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. The Journal of Biological Chemistry, 2006, 281(49): 37636-37645.
[16] Guo L, Yang H, Zhang X, Yang S. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. Journal of Experimental Botany, 2013, 64(6): 1755-1767.
[17] Dong M A, Farre E M, Thomashow M F. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(17): 7241-7246.
[18] Seo P J, Park M J, Lim M H, Kim S G, Lee M, Baldwin I T, Park C M. A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. The Plant Cell, 2012, 24(6): 2427-2442.
[19] Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiology, 2007, 143(4): 1739-1751.
[20] Park M R, Yun K Y, Mohanty B, Herath V, Xu F, Wijaya E, Bajic V B, Yun S J, De Los Reyes B G. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development. Plant Cell Environment, 2010, 33(12): 2209-2230.
[21] Yang A, Dai X, Zhang W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 2012, 63(7): 2541-2556.
[22] Su C F, Wang Y C, Hsieh T H, Lu C A, Tseng T H, Yu S M. A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiology, 2010, 153(1): 145-158.
[23] 刘文文, 李文学. 植物bHLH转录因子研究进展. 生物技术进展, 2013(1): 7-11.
Liu W W, Li W X. Progress of plant bHLH transcription factor. Current Biotechnology. 2013(1): 7-11. (in Chinese)
[24] Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X, Agarwal M, Zhu J K. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Development, 2003, 17(8): 1043-1054.
[25] Qin F, Shinozaki K, Yamaguchi-Shinozaki K. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiology, 2011, 52: 1569-1582.
[26] Hu Y, Jiang L, Wang F, Yu D. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. The Plant Cell, 2013, 25(8): 2907-2924.
[27] Zhao M L, Wang J N, Shan W, Fan J G, Kuang J F, Wu K Q, Li X P, Chen W X, He F Y, Chen J Y, Lu W J. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell Environment, 2013, 36(1): 30-51.
[28] Lee C M,Thomashow M F. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(37): 15054-15059.
[29] Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y, Shinwari Z K, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiology, 2009, 151(4): 2046-2057.
[30] Fursova O V, Pogorelko G V, Tarasov V A. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene, 2009, 429(1/2): 98-103.
[31] Feng X M, Zhao Q, Zhao L L, Qiao Y, Xie X B, Li H F, Yao Y X, You C X, Hao Y J. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biology, 2012, 12: 22.
[32] 向殿军, 殷奎德, 满丽莉, 徐正进. 生菜低温胁迫转录因子LsICE1的克隆、特征分析及其转化水稻. 中国农业科学, 2011, 44(21): 4340-4349.
Xiang D J, Yin K D, Man L L, Xu Z J. Cloning and characteristic analysis of cold stress transcription factor LsICE1 from Lettuce and transformation into rice. Scientia Agricultura Sinica, 2011, 44(21): 4340-4349. (in Chinese)
[33] Huang X S, Wang W, Zhang Q, Liu J H. A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiology, 2013, 162(2): 1178-1194.
[34] Puranik S, Sahu P P, Srivastava P S, Prasad M. NAC proteins: Regulation and role in stress tolerance. Trends in Plant Science, 2012, 17(6): 369-381.
[35] 李小兰, 胡玉鑫, 杨星, 于晓东, 李秋莉. 非生物胁迫相关NAC转录因子的结构及功能. 植物生理学报, 2013, 49(10): 1009-1017.
Li X L, Hu Y X, Yang X, Yu X D, Li Q L. Structure and functions of NAC transcription factors involved in abiotic stress. Plant Physiology Journal, 2013, 49(10): 1009-1017. (in Chinese)
[36] Liu H, Ouyang B, Zhang J H, Wang T T, Li H X, Zhang Y Y, Yu C Y, Ye Z H. Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PloS One, 2012, 7(11): e50785.
[37] Hao Y J, Wei W, Song Q X, Chen H W, Zhang Y Q, Wang F, Zou H F, Lei G, Tian A G, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant Journal, 2011, 68(2): 302-313.
[38] Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology, 2008, 67(1/2): 169-181.
[39] Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany, 2012, 63(8): 2933-2946.
[40] Le Henanff G, Profizi C, Courteaux B, Rabenoelina F, Gerard C, Clement C, Baillieul F, Cordelier S, Dhondt-Cordelier S. Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance. Journal of Experimental Botany, 2013, 64(16): 4877-4893.
[41] Ciftci-Yilmaz S, Mittler R. The zinc finger network of plants. Cellular and Molecular Life Sciences, 2008, 65(7/8): 1150-1160.
[42] 向建华, 李灵之, 陈信波. 植物非生物逆境相关锌指蛋白基因的研究进展. 核农学报, 2012, 26(4): 666-672, 716.
Xiang J H, Li L Z, Chen X B. Progress in the study of abiotic stress-related zinc finger protein genes in plants. Journal of Nuclear Agricultural Sciences, 2012, 26(4): 666-672, 716. (in Chinese)
[43] Vogel J T, Zarka D G, Van Buskirk H A, Fowler S G, Thomashow M F. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. The Plant Journal, 2005, 41(2): 195-211.
[44] Kim J C, Lee S H, Cheong Y H, Yoo C M, Lee S I, Chun H J, Yun D J, Hong J C, Lee S Y, Lim C O, Cho M J. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. The Plant Journal, 2001, 25(3): 247-259.
[45] Luo X, Bai X, Zhu D, Li Y, Ji W, Cai H, Wu J, Liu B, Zhu Y. GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta, 2012, 235(6): 1141-1155.
[46] Huang J, Sun S, Xu D, Lan H, Sun H, Wang Z, Bao Y, Wang J, Tang H, Zhang H. A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). Plant Molecular Biology, 2012, 80(3): 337-350.
[47] Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(16): 6309-6314.
[48] Kanneganti V, Gupta A K. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Molecular Biology, 2008, 66(5): 445-462.
[49] Chen L, Song Y, Li S, Zhang L, Zou C, Yu D. The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta, 2012, 1819(2): 120-128.
[50] Zou C, Jiang W, Yu D. Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. Journal of Experimental Botany, 2010, 61(14): 3901-3914.
[51] Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. Journal of Experimental Botany, 2013, 64(16): 5085-5097.
[52] Niu C F, Wei W, Zhou Q Y, Tian A G, Hao Y J, Zhang W K, Ma B, Lin Q, Zhang Z B, Zhang J S, Chen S Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environment, 2012, 35(6): 1156-1170.
[53] Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 2008, 6(5): 486-503.
[54] Nakai Y, Nakahira Y, Sumida H, Takebayashi K, Nagasawa Y, Yamasaki K, Akiyama M, Ohme-Takagi M, Fujiwara S, Shiina T, Mitsuda N, Fukusaki E, Kubo Y, Sato M H. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis. The Plant Journal, 2013, 73(5): 761-775.
[55] Nakai Y, Fujiwara S, Kubo Y, Sato M H. Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis. Plant Signaling Behavior, 2013, 8(3): e23358.
[56] Doherty C J, Van Buskirk H A, Myers S J, Thomashow M F. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. The Plant Cell, 2009, 21(3): 972-984.
[57] Kim Y, Park S, Gilmour S J, Thomashow M F. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. The Plant Journal, 2013, 75(3): 364-376.
[58] Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. The Plant Cell, 2012, 24(6): 2578-2595.
[59] Barrero-Gil J, Salinas J. Post-translational regulation of cold acclimation response. Plant Science, 2013, 205/206: 48-54.
[60] Chinnusamy V, Zhu J K, Sunkar R. Gene regulation during cold stress acclimation in plants. Methods in Molecular Biology, 2010, 639: 39-55.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[3] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[4] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[5] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[6] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[7] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[8] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[9] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[10] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[11] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[12] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[13] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[14] GUO BaoWei,TANG Chuang,WANG Yan,CAI JiaXin,TANG Jian,ZHOU Miao,JING Xiu,ZHANG HongCheng,XU Ke,HU YaJie,XING ZhiPeng,LI GuoHui,CHEN Heng. Effects of Two Mechanical Planting Methods on the Yield and Quality of High-Quality Late Indica Rice [J]. Scientia Agricultura Sinica, 2022, 55(20): 3910-3925.
[15] MA Xiao,CHEN PengFei. Improvement of Row Detection Method Before Wheat Canopy Closure Using Multispectral Images of UAV Image [J]. Scientia Agricultura Sinica, 2022, 55(20): 3926-3938.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!