Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (17): 3492-3500.doi: 10.3864/j.issn.0578-1752.2014.17.017

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES • Previous Articles     Next Articles

Construction of Genetic Map of Foxtail Millet (Setaria italica (L.) Beauv.) Using PCR-Based Molecular Markers

WANG Zhi-lan, WANG Jun, YUAN Feng, DU Xiao-fen, YANG Hui-qing, GUO Er-hu   

  1. Institute of Millet, Shanxi Academy of Agricultural Sciences, Changzhi 046011, Shanxi
  • Received:2014-02-19 Online:2014-09-01 Published:2014-06-04

Abstract: 【Objective】 This study aims to construct a genetic map of foxtail millet (Setaria italica (L.) Beauv.) using PCR- based molecular markers. 【Method】 With 81 SSR markers distributed in nine chromosome of foxtail millet as reference markers, a total of 1 733 markers including SSR, STS, SNP, and SV from foxtail millet and ACGM and SSR from pearl millet, tall fescue and rice were used to screen polymorphic markers between Gao 146A and K103, and the polymorphic markers were tested in the F2 segregation populations derived from cross Gao 146A / K103. MAPMAKER VERSION 3.0 and MapDraw V2 were used for linkage analysis and integrated genetic map drawing.【Result】A genetic linkage map of foxtail millet containing 192 different kinds of markers was constructed, and 33 markers were newly mapped, of which 32 were from foxtail millet and 1 from pearl millet. The map consisted of nine linkage groups and covered the genome length 2 082.5 cM. Each linkage group was between 119.5-475.2 cM and the average distance of each linkage group spanned 231.39 cM. The number of markers on each linkage group ranged from 10 to 37 and the average distance between different markers was 10.85 cM. There were 36 markers accounted for 18.75% of 192 ones distributed in different linkage group and appeared segregation disorder. There appeared segregation disorder hotspots on LG2, LG6 and LG7, including 10, 15 and 7 segregation markers, respectively, and segregation disorder scattered on LG1, LG4, LG5 and LG8, however, no segregation disorder occurred on LG3 and LG9. According to transferability of molecular markers from different crops, there were 205 polymorphic markers of 1 235 ones from foxtail millet between parents and F2 population and the polymorphism rate was 16.60%, however there was only one polymorphic marker of 498 ones from pearl millet, tall fescue and rice.【Conclusion】A genetic linkage map of foxtail millet, covering the genome length 2 082.5 cM, was constructed using molecular markers from different species and most of the markers in this map were from foxtail millet.

Key words: foxtail millet , molecular marker , polymorphism , genetic map , transfer ability

[1]王永芳, 李伟, 智慧, 李海权, 刁现民. 基于谷子测序开发的SSR标记多态性检测. 河北农业科学, 2010, 14(11): 73-76.
Wang Y F, Li W, Zhi H, Li H Q, Diao X M. Selection of SSR primers development from genome sequence of foxtail millet. Journal of Hebei Agricultural Sciences, 2010, 14(11): 73-76. (in Chinese)
[2]王晓宇, 刁现民, 王节之, 王春芳, 王根全, 郝晓芬, 梁増浩, 王雪梅, 赵芳芳. 谷子SSR分子图谱构建及主要农艺性状QTL定位. 植物遗传资源学报, 2013, 14(5): 871-878.
Wang X Y, Diao X M, Wang J Z, Wang C F, Wang G Q, Hao X F, Liang Z H, Wang X M, Zhao F F. Construction of genetic map and QTL analysis of some main agronomic traits in millet. Journal of Plant Genetic Resources, 2013, 14(5): 871-878. (in Chinese)
[3]骆晚侠, 张李, 杨凯, 李奕松, 赵波, 李明, 万平. 小豆SSR分子标记遗传连锁图谱构建. 中国农业科学, 2013, 46(17): 3534-3544.
Luo W X, Zhang L, Yang K, Li Y S, Zhao B, Li M, Wan P. Construction of genetic linkage map using SSR molecular markers in azuki bean (Vigna angularis Ohwi and Ohashi). Scientia Agicultura Sinica, 2013, 46(17): 3534-3544. (in Chinese)
[4]杨延兵, 管延安, 张华文, 徐平平, 张文兰, 陈利容, 秦岭. 谷子品种遗传差异的RAPD标记分析. 华北农学报, 2007, 22(4): 134-136.
Yang Y B, Guan Y A, Zhang H W, Xu P P, Zhang W L, Chen L R, Qin L. Genetic variation among varieties of foxtail millet (Setaria italica Beauv.) based on RAPD markers. Acta Agriculturae Boreali Sinica, 2007, 22(4): 134-136. (in Chinese)
[5]Wang Z M, Devos K M, Liu C J, Wang R Q, Gale M D. Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theoretical and Applied Genetics, 1998, 96: 31-36.
[6]d’Enuequin M L T, Panaud O, Toupance B, Sarr A. Assessment of genetic relationship between Setaria italica and it’s wild relative S.viridis using AFLP markers. Theoretical and Applied Genetics, 2000, 100(7): 1061-1066.
[7]Jia X P, Zhang Z B, Liu Y H, Zhang C W, Shi Y S, Song Y C, Wang T Y, Li Y. Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.]. Theoretical and Applied Genetics, 2009, 118: 821-829.
[8]Zhang G Y, Liu X, Quan Z W, Cheng S F, Xu X, Pan S K, Xie M, Zeng P, Yue Z, Wang W L, Tao Y, Bian C, Han C L, Xia Q J, Peng X H, Cao R, Yang X H, Zhan D L, Hu J C, Zhang Y X, Li H N, Li H, Li N, Wang J Y, Wang C C, Wang R Y, Guo T, Cai Y J, Liu C Z, Xiang H T, S hi Q X, Huang P, Chen Q C, Li Y R, Wang J, Zhao Z H, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30(6): 549-556.
[9]纪剑辉, 曹爱忠, 王海燕, 覃碧, 王苏玲, 孔芳, 陈佩度, 刘大钧, 王秀娥. 利用基于PCR的分子标记区分普通小麦-提莫菲维小麦渐渗系. 遗传, 2007, 29(10): 1256-1262.
Ji J H, Cao A Z, Wang H Y, Qin B, Wang S L, Kong F, Chen P D, Liu D J, Wang X E. Discrimination of the Triticum aestivum-T. timopheevii introgression lines using PCR-based molecular markers. Hereditas, 2007, 29(10): 1256-1262. (in Chinese)
[10]Xu P, Wu X H, Wang B G, Liu Y H, Ehlers J D, Close T J, Roberts P A, Diop N N , Qin D H , Hu T T, Lu Z F, Li G J. A SNP and SSR based genetic map of asparagus bean (Vigna. unguiculata ssp. Sesquipedialis ) and comparison with the broader species. PLoS One, 2011, 6(1): e15952.
[11]Hearnden P R, Eckermann P J, McMichael G L, Hayden M J, Eglinton J K, Chalmers K J. A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theoretical and Applied Genetics, 2007, 115: 383-391.
[12]Xia Z J, Tsubokura Y, Hoshi M, Hanawa M, Yano C, Okamura K, Ahmed T A, Anai T, Watanabe S, Hayashi M, Kawai T, Hossain K G, Masaki H, Asai K, Yamanaka N, Kubo N, Kadowaki K, Nagamura Y, Yano M, Sasaki T, Harada K. An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using A single F2 population. DNA Research, 2007, 14: 257-269.
[13]Ganal M W, Röder M S. Microsatellite and SNP markers in wheat breeding. Genomics Applications in Crops, 2007, 2: 1-24.
[14]赵丹, 程须珍, 王丽侠, 王素华, 马燕玲. 绿豆遗传连锁图谱的整合. 作物学报, 2010, 36(6): 932-939.
Zhao D, Cheng X Z, Wang L X, Wang S H, Ma Y L. Integration of mungbean (Vigna radiata) genetic linkage map. Acta Agronomica Sinica, 2010, 36(6): 932-939. (in Chinese)
[15]李媛媛, 沈金雄, 王同华, 傅廷栋, 马朝芝. 利用SRAP、SSRA和FLP标记构建甘蓝型油菜遗传连锁图谱. 中国农业科学, 2007, 40(6): 1118-1126.
Li Y Y, Shen J X, Wang T H, Fu T D, Ma C Z. Construction of a linkage map using SRAP, SSR and AFLP markers in Brassica napus L.. Scientia Agicultura Sinica, 2007, 40(6): 1118-1126. (in Chinese)
[16]Graham J, Smith K, MacKenzie K, Jorgenson L, Hackett C, Powell  W. The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theoretical and Applied Genetics, 2004, 109: 740-749.
[17]Testolin R, Huang W G, Lain O, Messina R, Vecchione A, Cipriani  G. A kiwifruit (Actinidia spp.) linkage map based on microsatellites and integrated with AFLP markers. Theoretical and Applied Genetics, 2001, 103: 30-36.
[18]Rosa R L, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard  G, Bervill A, Martin A, Baldoni L. A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theoretical and Applied Genetics, 2003, 106: 1273-1282.
[19]Dellaporta S L, Wood J, Hicks J B. A plant DNA minipreparation: Version Ⅱ. Plant Molecular Biology Reporter, 1983, 1(4): 19-21.
[20]Jia X P, Shi Y S, Song Y C, Wang G Y, Wang T Y, Li Y. Development of EST-SSR in foxtail millet (Setaria italica). Genetic Resources and Crop Evolution, 2007, 54(2): 233-236.
[21]Zhao W G, Lee G A, Kwon S W, Ma K H, Lee M C, Park Y J. Development and use of novel SSR markers for molecular genetic diversity in Italian millet (Setaria italica L.). Genes and Genomics, 2012, 34: 51-57.
[22]Gupta S, Kumari K, Sahu P P, Vidapu S, Prasad M. Sequence-based novel genomic microsatellite markers for robust genotyping purposes in foxtail millet [Setaria italica (L.) P. Beauv.]. Plant Cell Report, 2012, 31: 323-327.
[23]杨坤. 谷子SSR标记连锁图谱构建及几个主要性状QTL分析[D]. 石家庄: 河北师范大学, 2006.
Yang K. Construction of genetic map using SSR markers and QTL analysis of some main agronomic traits in foxtail millet[D]. Shijiazhuang: Hebei Normal University, 2006. (in Chinese)
[24]卢泳全, 汪旭升, 黄伟素, 肖天霞, 郑燕, 吴为人. 基于水稻内含子长度多态性开发禾本科扩增共有序列遗传标记. 中国农业科学, 2006, 39(3): 433-439.
Lu Y Q, Wang X S, Huang W S, Xiao T X, Zheng Y, Wu W R. Development of amplified consensus genetic markers in gramineae based on rice intron length polymorphisms. Scientia Agiculturea Sinica, 2006, 39(3): 433-439. (in Chinese)
[25]Yu J K, Rota M L, Kantety R V, Sorrells M E. EST derived SSR markers for comparative mapping in wheat and rice. Molecular Genetics and Genomics, 2004, 271: 742-751.
[26]Senthilvel S, Jayashree B, Mahalakshmi V, Kumar P S, Nakka S, Nepolean T, Hash C. Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biology, 2008, 8: 119-127.
[27]Saha M C, Rouf Mian M A, Eujayl I, Zwonitzer J C, Wang L J, May G D. Tall fescue EST-SSR markers with transferability across several grass speciel. Theoretical and Applied Genetics, 2004, 109: 783-791.
[28]梁宏伟, 王长忠, 李忠, 罗相忠, 邹桂伟. 聚丙烯酰胺凝胶快速、高效银染方法的建立. 遗传, 2008, 30(10): 1379-1382.
Liang H W, Wang C Z, Li Z, Luo X Z, Zou G W. Improvement of the silver-stained technique of polyacrylamide gel electrophoresis. Hereditas, 2008, 30(10): 1379-1382. (in Chinese)
[29]Phadnis N, Orr H A. A single gene causes both male sterility and segregation distortion in drosophila hybrids. Science, 2009, 323: 376-379.
[30]Lin S Y, Ikehashi H, Yanagihara S, Kawashima A. Segregation distortion via male gametes in hybrids between Indica and Japonica or wide-compatibility varieties of rice (Oryza sativa L.). Theoretical and Applied Genetics, 1992, 84: 812-818.
[31]Xu Y, Zhu L, Xiao J, Huang N, McCouch S R. Chromosomal regions associated with segregation distortion of molecular markers in F2 , backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Molecular and General Genetics, 1997, 253: 535-545.
[32]Howden R, Park S K, Moore J M, Orme J, Grossniklaus U, Twell D. Selection of T-DNA tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics, 1998, 149: 621-631.
[33]严建兵, 汤华, 黄益勤, 郑用琏, 李建生. 玉米F2群体分子标记偏分离的遗传分析. 遗传学报, 2003 , 30: 913-918.
Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S. Genetic analysis of segregation distortion of molecular markers in maize F2 population. Acta Genetica Sinica, 2003, 30: 913-918. (in Chinese)
[34]Lashermes P, Combes M C, Prakash N S, Trouslot P, Lorieux M, Charrier A. Genetic linkage map of Coffea canephora: Effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome, 2001, 44: 589-596.
[35]Wang J, Wang Z L, Yang H Q, Yuan F, Guo E H, Tian G, Han Y H, Li H X, Wang Y W, Diao X M, Guo P Y. Genetic analysis and preliminary mapping of a highly male-sterile gene in foxtail millet (Setaria italica (L.) P. Beauv.) using SSR markers. Journal of Integrative Agriculture, 2013, 12(12): 2143-2148.
[36]Nayak S N, Zhu H Y, Varghese N, Datta S, Choi H K, Horres R, Jüngling R, Singh J, Kavi Kishor P B, Sivaramakrishnan S, Hoisington D A, Kahl G, Winter P, Cook D R, Varshney R K. Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theoretical and Applied Genetics, 2010, 120: 1415-1441.
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[3] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[4] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[5] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[6] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[7] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[8] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[9] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[10] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[11] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[12] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[13] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[14] Ting ZHANG,GenPing WANG,YanJie LUO,Lin LI,Xiang GAO,RuHong CHENG,ZhiGang SHI,Li DONG,XiRui ZHANG,WeiHong YANG,LiShan XU. Color Difference Analysis in the Application of High Quality Foxtail Millet Breeding [J]. Scientia Agricultura Sinica, 2021, 54(5): 901-908.
[15] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!