Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (13): 2671-2679.doi: 10.3864/j.issn.0578-1752.2014.13.019

• RESEARCH NOTES • Previous Articles     Next Articles

Validation and Application of Function Markers CWI22 and CWI21 of TaCwi-A1 Gene Related to Wheat Kernel Weight

 XIANG  Ji-Shan-1, 2 , MU  Pei-Yuan-1, 2 , SANG  Wei-1, 2 , NIE  Ying-Bin-1, XU  Hong-Jun-1, ZHUANG  Li-2, 3 , CUI  Feng-Juan-1, 2 , HAN  Xin-Nian-1, ZOU  Bo-1   

  1. 1、Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences, Shihezi 832000, Xinjiang;
    2、Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi 832000, Xinjiang;
    3、College of Life Sciences, Shihezi University, Shihezi 832002, Xinjiang
  • Received:2013-12-16 Online:2014-07-01 Published:2014-04-08

Abstract: 【Objective】In order to provide some information for molecular marker assisted selection, the function markers CWI22 and CWI21 of TaCwi-A1 gene related to wheat kernel weight were validated. The allelic frequencies at TaCwi-A1 locus were detected by those markers in Xinjiang wheat germplasm. 【Method】The 110 Xinjiang winter wheat varieties were genotyped with CWI22 and CWI21, and the difference in thousand kernel weight (TKW) among varieties with TaCwi-A1a and TaCwi-A1b were analyzed. The allelic variations at TaCwi-A1 locus were detected by CWI22 and CWI21 in a total of 1 241 Xinjiang wheat germplasms. 【Result】In the 110 Xinjiang winter wheat varieties, a 402-bp fragment could be amplified by CWI22 in 46 varieties, which means they had genotype of TaCwi-A1a, a 404-bp fragment could be amplified by CWI21 in 64 varieties, which means they had genotype of TaCwi-A1b. And the TKW of varieties with TaCwi-A1a (43.5 g) was significantly higher than that with TaCwi-A1b (40.9 g) (P<0.05). In the 1 241 Xinjiang wheat germplasms, the frequencies of TaCwi-A1a and TaCwi-A1b were 62.6% and 37.4% in all germplasms, 63.0% and 37.0% in winter wheats varieties, 61.7% and 38.3% in spring wheat varieties, respectively. In different types of varieties of both winter and spring wheat germplasm, the frequency of TaCwi-A1a was in order of exotic varieties (lines)>domestic varieties (lines)>breeding varieties (lines)>released varieties>landraces. In Xinjiang released varieties, the frequencies of TaCwi-A1a and TaCwi-A1b were 40.0% and 60.0% in winter wheats, 68.6% and 31.4% in spring wheats, respectively. In three stages of before 1990, 1991 to 2000, and after 2001, the frequencies of TaCwi-A1a and TaCwi-A1b were 11.1% and 88.9%, 50.0% and 50.0%, 69.2% and 30.8%, respectively. 【Conclusion】The markers CWI22 and CWI21 of TaCwi-A1 gene can efficiently distinguish the differences of wheat TKW, which can be used for marker assisted selection of kernel weight (KW). In Xinjiang wheat germplasm, TaCwi-A1a gene has a high frequency. And the frequency of TaCwi-A1a gene in winter wheat germplasm is a little higher than spring wheat germplasm, introduced varieties (lines) is higher than breeding varieties (lines), breeding varieties (lines) is higher than landraces. In both landraces and breeding varieties (lines), the frequencies of TaCwi-A1a gene in spring wheat varieties are higher than winter wheat varieties, which means that the breeding selection of KW in winter and spring wheat are different in Xinjiang, but there had high selection pressure in all, which makes the frequency of TaCwi-A1a gene in released varieties increase.

Key words: Xinjiang wheat , germplasm , kernel weight , CWI , function marker

[1]He Z H, Rajaram S, Xin Z Y, Huang G Z. A History of Wheat Breeding in China. Mexieo: CIMMYT, 2001: 6-8.

[2]彭芹, 郭骞欢, 张西斌, 程敦公, 戴双, 李豪圣, 赵世杰, 宋健民. 山东小麦品种更替过程中光合特性的演变. 中国农业科学, 2012, 45(18): 3883-3891.

Peng Q, Guo Q H, Zhang X B, Cheng D G, Dai S, Li H S, Zhao S J, Song J M. Evolution in photosynthetic characteristics of wheat cultivars widely planted in Shandong province since 1950s. Scientia Agricultura Sinica, 2012, 45(18): 3883-3891. (in Chinese)

[3]Zhou Y, He Z H, Sui X X, Xia X C, Zhang X K, Zhang G S. Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Science, 2007, 47(3): 245-253.

[4]Xiao Y G, Qian Z G, Wu K, Liu J J, Xia X C, Ji W Q, He Z H. Genetic gains in grain yield and physiological traits of winter wheat in Shandong province, China, from 1969 to 2006. Crop Science, 2012, 52(1): 44-56.

[5]宋健民, 戴双, 李豪圣, 程敦公, 刘爱峰, 曹新有, 刘建军, 赵振东. 山东省近年来审定小麦品种农艺和品质性状演变分析. 中国农业科学, 2013, 46(6): 1114-1126.

Song J M, Dai S, Li H S, Cheng D G, Liu A F, Cao X Y, Liu J J, Zhao Z D. Evolution of agronomic and quality traits of wheat cultivars released in Shandong province recently. Scientia Agricultura Sinica, 2013, 46(6): 1114-1126. (in Chinese)

[6]曹廷杰. 河南省近二十年来小麦育成品种主要农艺性状遗传演变规律. 郑州: 河南农业大学, 2009.

Cao T J. Evolution of main agronomic traits for wheat improved varieties in Henan province in the past twenty years. Zhengzhou: Henan Agricultural University, 2009. (in Chinese)

[7]聂迎彬, 穆培源, 桑伟, 徐红军, 庄丽, 邹波. 新疆与国内冬小麦主栽品种(系)产量的比较研究. 新疆农业科学, 2011, 48(1): 6-10.

Nie Y B, Mu P Y, Sang W, Xu H J, Zhuang L, Zou B. Comparison of the leading cultivars of Xinjiang winter wheat and the cultivars introduced from main wheat regions in China. Xinjiang Agricultural Sciences, 2011, 48(1): 6-10. (in Chinese)

[8]庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003.

Zhuang Q S. Wheat Improvement and Pedigree Analysis in China. Beijing: Chinese Agricultural Press, 2003. (in Chinese)

[9]张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路. 中国农业科学, 2006, 39(8): 1526-1535.

Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y C, Li Z S. Hitchhiking effect mapping: A new approach for discovering agronomic important genes. Scientia Agricultura Sinica, 2006, 39(8): 1526-1535. (in Chinese)

[10]周阳. 中国冬小麦产量潜力及重要农艺性状的遗传改良. 杨凌: 西北农林科技大学, 2005.

Zhou Y. Genetic improvement in yield and its associated traits of winter wheat in China. Yangling: Northwest Sci-Tech University of Agriculture and Forestry, 2005. (in Chinese)

[11]刘志增, 卢少源, 李宗智. 华北地区中高产冬麦品种源库演变分析. 河北农业大学学报, 1991, 14(3): 1-4.

Liu Z Z, Lu S Y, Li Z Z. Source and sink improvement of middle to high yield winter wheat varieties in northern China area. Journal of Hebei Agrieultural University, 1991, 14(3): 1-4. (in Chinese)

[12]陈化榜, 李晴棋. 山东省50年代以来小麦品种性状演变的研究. 山东农业大学学报, 1991, 22(l): 95-98.

Chen H B, Li Q Q. Studies on the evolutionary changes in several characters of wheat cultivars grown in Shandong Province during 1949 to 1989. Journal of Shandong Agricultural University, 1991, 22(l): 95-98. (in Chinese)

[13]胡延吉, 赵檀方. 小麦高产育种中粒重作用的研究. 作物学报, 1995, 21(6): 671-678.

Hu Y J, Zhao T F. Studies on the effect of grain weight in breeding of high-yielding wheat. Acta Agronomica Sinica, 1995, 21(6): 671-678. (in Chinese)

[14]许为钢, 胡琳, 吴兆苏, 盖钧镒. 关中地区小麦品种产量与产量结构遗传改良的研究. 作物学报, 2000, 26: 352-358.

Xu W G, Hu L, Wu Z S, Gai J Y. Studies on genetic improvement of yield and yield components of wheat cultivars in mid-Shaanxi area. Acta Agronomica Sinica, 2000, 26: 352-358. (in Chinese)

[15]许世蛟, 熊小丽, 王艳艳, 辛俊, 赵言文. 江苏省小麦品种更替过程中主要农艺性状的演变. 西南农业学报, 2009, 22(5): 1242-1247.

Xu S J, Xiong X L, Wang Y Y, Xin J, Zhao Y W. Changes of main agronomic traits with cultivar replacement of wheat in Jiangsu Province, China. Southwest China Journal of Agricultural Sciences, 2009, 22(5): 1242-1247. (in Chinese)

[16]Huang X Q, Cöster H, Ganal M W, Röder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2003, 106: 1379-1389.

[17]Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusi? D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, Saker L, Clarkson D T, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M C, Hollington P A, Aragués R, Royo A, Dodig D. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring SQ1 and its uses to compare QTLs for grain yield across a range of environments. Theoretical and Applied Genetics, 2005, 110: 865-880.

[18]Su J Y, Tong Y P, Liu Q Y, Li B, Jing R L, Li J Y, Li Z S. Mapping quantitative trait loci for post-anthesis dry matter accumulation in wheat. Journal of Integrative Plant Biology, 2006, 48 (8): 938-944.

[19]阮成江, 何祯祥, 钦佩. 我国农作物QTL定位研究的现状和进展. 植物学通报, 2003, 20(l): 10-22.

Ruan C J, He Z X, Qin P. Research advancements on crop QTL mapping in China. Chinese Bulletin of Botany, 2003, 20(l): 10-22. (in Chinese)

[20]Xu Y B, Crouch J H. Marker-assisted selection in plant breeding: From publications to practice. Crop Science, 2008, 48: 391-407.

[21]何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37(2): 202-215.

He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agronomica Sinica, 2011, 37(2): 202-215. (in Chinese)

[22]Bagge M, Xia X C, Lübberstedt T. Functional markers in wheat. Current Opinion Plant Biology, 2007, 10: 211-216.

[23]Roitsch T, Balibrea M E, Hofmann M, Proels R, Sinha A K. Extracellular invertase: Key metabolic enzyme and PR protein. Journal of Experimental Botany, 2003, 54: 513-524.

[24]Sturm A. Invertase, Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiology, 1999, 121: 1-7.

[25]Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends in Plant Science, 1999, 4: 401-407.

[26]Cho J I, Lee S K, Ko S, Kim H K, Jun S H, Lee Y H, Bhoo S H, Lee K W, An G, Hahn T R, Jeon J S. Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Ortza sativa L.). Plant Cell Reports, 2005, 24: 225-236.

[27]Miller M E, Chourey P S. The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. The Plant Cell, 1992, 4: 297-305.

[28]Cheng W H, Taliercio E W, Chourey P S. The miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. The Plant Cell, 1996, 8: 971-983.

[29]Wang Y Q, Wei X L, Xu H L, Chai C L, Meng K, Zhai H L, Sun A J, Peng Y G, Wu B, Xiao G F, Zhu Z. Cell-wall invertases from rice are differentially expressed in caryopsis during the grain filling stage. Journal Integrative Plant Biology, 2008, 50(4): 466-474.

[30]Weschke W, Panitz R, Gubatz S, Wang Q, Radchuk R, Weber H, Wobus U. The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. The Plant Journal, 2003, 33: 395-411.

[31]Tang G Q, Lüscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. The Plant Cell, 1999, 11: 177-189.

[32]Sturm A, Chrispeels M J. cDNA cloning of carrot extracellular β-fructodisase and its expression in response to wounding and bacterial infection. The Plant Cell, 1990, 2: 1107-1119.

[33]Godt D E, Roitsch T. Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiology, 1997, 115: 273-282.

[34]Dimou M, Flemetakis E, Delis C, Aivalakis G, Spyropoulos K G, Katinakis P. Genes coding for a putative cell-wall invertase and two putative monosaccharide/H+ transporters are expressed in roots of etiolated Glycine max seedlings. Plant Science, 2005, 169: 798-804.

[35]Jain M, Chourey P S, Li Q B, Pring D R. Expression of cell wall invertase and several other genes of sugar metabolism in relation to seed development in sorghum (Sorghum bicolor). Journal of Plant Physiology, 2008, 165: 331-344.

[36]Ma D Y, Yan J, He Z H, Wu L, Xia X C. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Molecular Breeding, 2012, 29: 43-52.

[37]韩利明, 杨芳萍, 夏先春, 阎俊, 张勇, 曲延英, 王忠伟, 何中虎. 株高、粒重及抗病相关基因在不同国家小麦品种中的分布.麦类作物学报, 2012, 31(5): 824-831.

Han L M, Yang F P, Xia X C, Yan J, Zhang Y, Qu Y Y, Wang Z W, He Z H. Distribution of genes related to plant height, kernel weight and disease resistance among wheat cultivars from major countries. Journal of Triticeae Crops, 2012, 31(5): 824-831. (in Chinese)

[38]Lagudah E S, Apples R, McNeil D. The Nor-D3 locus of Triticum tauschii: Naturiation variation and genetic linkage to markers in chromosome 5. Genome, 1991, 34: 387-395.

[39]Hanft J M, Jones R J, Stumme A B. Dry matter accumulation and carbohydrate concentration patterns of field-grown and in vitro cultured maize kernels from the tip and middle ear positions. Crop Science, 1986, 26: 568-572.

[40]Miralles D J, Slafer G A. Individual grain weight responses to genetic reduction in culm length in wheat as affected by source-sink manipulations. Field Crops Research, 1995, 43: 55-66.

[41]李春喜, 石惠恩, 姜丽娜. 小麦不同种植密度粒重分布特性的研究. 西北植物学报, 1999, 19(1): 132-137.

Li C X, Shi H E, Jiang L N. Investigation on the grain weight distribution characteristic of wheat in different densities. Acta Botanica Boreali-Occidentalia Sincia, 1999, 19(1): 132-137. (in Chinese)

[42]贺明荣, 王振林, 张杰昌. 小麦开花后光合物质在不同穗位间的分配及其与穗粒重的关系. 作物学报, 2000, 26(2): 190-194.

He M R, Wang Z L, Zhang J C. Distribution of photo assimilate to different parts of wheat era after anthesis and its relation to kernel weight per era. Acta Agronomica Sinica, 2000, 26(2): 190-194. (in Chinese)

[43]魏凌基, 艾尼瓦尔, 孔广超, 任丽彤. 新疆春小麦育成推广品种及骨干亲本的高分子量谷蛋白亚基的组成分析. 石河子大学学报: 自然科学, 2003, 7(1): 41-44.

Wei L J, Ainiwar, Kong G C, Ren L T. Analyses to the High-molecular-weight glutenin subunits of backbone parents and Xinjiang spring wheat popularized varieties. Journal of Shihezi University: Natural Science, 2003, 7(1): 41-44. (in Chinese)

[44]周向阳. 干旱半干旱地区包气带水分分布规律与影响因素研究. 兰州: 兰州大学, 2010.

Zhou X Y. Study on disciplines and affecting factors of soil moisture distribution at unsatutated zone in arid and semi-arid areas. Lanzhou: Lanzhou University, 2010. (in Chinese)

[45]孙果忠. 小麦重要基因的分子标记实用性评价[D]. 北京: 中国农业科学院, 2012.

Sun G Z. Evaluation to the utility of molecular markers for important genes in wheat [D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)

[46]刘新伦, 王长有, 王亚娟, 张宏, 吉万全. 小麦骨干亲本阿夫及其衍生品种(系)重要性状的演变规律. 西北农林科技大学学报: 自然科学版, 2011, 39(1): 96-102.

Liu X L, Wang C Y, Wang Y J, Zhang H, Ji W Q. Evolution trend of important characters of wheat core parents Funo and its derived varieties. Journal of Northwest A& F University: Natural Science, 2011, 39(1): 96-102. (in Chinese)

[47]李红琴, 相吉山, 郭青云, 杨欣明, 李秀全, 刘伟华, 李立会. 小麦骨干亲本阿夫及其衍生品种(系)的高分子量麦谷蛋白亚基演变分析. 植物遗传资源学报, 2009, 10(1): 37-41.

Li H Q, Xiang J S, Guo Q Y, Yang X M, Li X Q, Liu W H, Li L H. Analysis of HMW-GS evolution in Funo and its derived varieties. Journal of Plant Genetic Resources, 2009, 10(1): 37-41. (in Chinese)

[48]李小军, 徐鑫, 刘伟华, 李秀全, 李立会. 利用SSR标记探讨骨干亲本欧柔在衍生品种的遗传. 中国农业科学, 2009, 42(10): 3397-3404.

Li X J, Xu X, Liu W H, Li X Q, Li L H. Genetic diversity of the founder parent Orofen and its progenies revealed by SSR markers. Scientia Agricultura Sinica, 2009, 42(10): 3397-3404. (in Chinese)

[49]赖运平, 李俊, 刘新春, 彭正松, 胡晓蓉, 杨武云. 小麦南大2419及其衍生品种(系)主要农艺性状的关联分析. 分子植物育种, 2011, 9(5): 536-546.

Lai Y P, Li J, Liu X C, Peng Z S, Hu X R, Yang W Y. Association analysis of main agronomic traits in wheat of Nanda2419 and its derivatives. Molecular Plant Breeding, 2011, 9(5): 536-546. (in Chinese)

[50]相吉山, 杨欣明, 李秀全, 刘伟华, 高爱农, 李立会, 马晓岗. 小麦骨干亲本南大2419对衍生品种(系)HMW-GS的贡献分析. 植物遗传资源学报, 2013, 14(6): 1053-1058.

Xiang J S, Yang X M, Li X Q, Liu W H, Gao A N, Li L H, Ma X G. The analysis of HMW-GS evolution in Mentana and its derivations. Journal of Plant Genetic Resources, 2013, 14(6): 1053-1058. (in Chinese)

[51]徐鑫, 李小军, 李秀全, 杨欣明, 刘伟华, 高爱农, 李立会. 小麦骨干亲本“洛夫林 10 号”1BL/1RS 在衍生品种中的遗传分析. 麦类作物学报, 2010, 30(2): 221-226.

Xu X, Li X J, Li X Q, Yang X M, Liu W H, Gao A N, Li L H. Inheritance of 1BL/1RS of founder parent lovrin 10 in its progeny. Journal of Triticeae Crops, 2010, 30(2): 221-226. (in Chinese)
[1] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[4] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[5] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[6] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[7] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[8] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[9] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[10] DongFeng QIU,PingJuan GE,Gang LIU,JinSong YANG,JianGuo CHEN,ZaiJun ZHANG. Breeding and Evaluation of Elite Rice Line ZY56 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1081-1091.
[11] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[12] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[13] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[14] SHEN ShengFa,XIANG Chao,WU LieHong,LI Bing,LUO ZhiGao. Analysis on the Characteristics of Soluble Sugar Components in Sweetpotato Storage Root and Its Relationship with Taste [J]. Scientia Agricultura Sinica, 2021, 54(1): 34-45.
[15] LI Ying,ZHANG ShuHang,GUO Yan,ZHANG XinFang,WANG GuangPeng. Catkin Phenotypic Diversity and Cluster Analysis of 211 Chinese Chestnut Germplasms [J]. Scientia Agricultura Sinica, 2020, 53(22): 4667-4682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!