Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (1): 11-23.doi: 10.3864/j.issn.0578-1752.2014.01.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Diversity of the Main Chinese Three-Line Hybrid Rice Parents Based on Functional Genetic Markers Related to Yield

 ZHANG  Tao-1, 3 , YANG  Jiao-2, JIANG  Kai-Feng-1, 3 , CAO  Ying-Jiang-1, YANG  Li-1, 3 , YANG  Qian-Hua-1, WAN  Xian-Qi-1, YOU  Shu-Mei-1, LUO  Jing-1, GAO  Lei-1, LI  Zhao-Xiang-1, ZHENG  Jia-Kui-1, 2 , 3   

  1. 1.Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences/Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Deyang 618000, Sichuan;
    2.Bioengineering College, Chongqing University, Chongqing 400044;
    3.Luzhou Branch of National Rice Improvement Center, Luzhou 646100, Sichuan
  • Received:2013-06-27 Online:2014-01-01 Published:2013-09-27

Abstract: 【Objective】 The objective of this study is to analyze the genetic diversity of the three-line hybrid rice parents based on functional genetic markers. 【Method】 Genetic diversity of 76 three-line hybrid rice parents was analyzed by 44 functional gene markers involved in QTL loci, or fine mapping, or been cloned which linked closely to rice yield trait, and these genes have been considerably reported by literature. At the same time, the genetic diversity of the above materials mentioned was also studied by 29 SSR markers with higher polymorphism, clear band pattern, reproducible, and covered in 12 chromosomes of three-line hybrid rice parents. According to claim of POPGEN32 analysis software, the PCR gel electrophoresis product data matrix was transformed into the genotype data, and the alleles (Na), effective number of alleles (Ne), percentage of polymorphic loci (P), and Nei’s genetic diversity index (He) were calculated. This study further evaluated the genetic diversity of all parents according to the deduced information of POPGEN32 analysis software. Besides, this study also calculated the genetic differentiation coefficient (Fst), Nei’s genetic distance (D), and further checked out the genetic structure and genetic relationship. NTSYS-pc2.10e software was used to calculate the genetic similarity coefficient (GS), and cluster analysis was made according to GS group and using the non-weighted average method (UPGMA), and the genetic dendrogram was mapped. 【Result】Of which 37 functional gene markers showed polymorphism and 86 total alleles loci were detected; the percentage of polymorphic loci (p) was 84.09%. While the number of effective alleles(ne) was 62.95, which accounted for 73.2%, Nei’s genetic diversity index(he) ranged from 0.049 to 0.831, and 0.650 in avarage. The genetic similarity (GS) of 76 varieties ranged from 0.323 to 0.973, and 0.650 in average. UPGMA cluster analysis showed that 76 accessions could be classified into two distinct classes of maintainer lines and restoring lines, at similarity coefficient of 0.618. The coefficient of genetic differentiation(gst) was 0.151, belonging to high variation level, and the Nei’s genetic distance (GD) was 0.185. The genetic distance within the groups was relatively small, relatively large among the taxa. A total of 72 alleles loci were detected by 29 SSR markers. UPGMA cluster analysis showed that the 76 accessions cannot be classified into two distinct classes of maintainer lines and restoring lines. Part maintainer lines clustered in a group of restoring lines, some restoring lines clustered in the maintainer line group. 【Conclusion】 The studies suggested that the functional gene markers had a high DNA polymorphisms detection efficiency, and can be used as a useful tool for their accuracy and reliability of measuring genetic diversity. The backbone parents in research showed nearer genetic relationship, higher homology sort of genetic basis. However, there still showed higher genetic differentiation between maintainer line and restoring line, suggesting that there was a higher space of using heterosis breeding in the yield of rice parents.

Key words: rice , functional gene , cluster analysis , genetic diversity

[1]江云珠, 汤圣祥, 余汉勇, 杨保军, 唐健. 利用SSR标记对中国水稻品种进行遗传多样性评价和品种分类的研究. 中国稻米, 2010, 16(4): 19-24.

Jiang Y Z, Tang S X, Yu H Y, Yang B J, Tang J, Study on genetic diversity evaluation and classification of Chinese rice varieties using SSR markers. China Rice, 2010, 16(4): 19-24. (in Chinese)

[2]马静, 安永平, 王彩芬, 张文银. 遗传多样性研究进展. 陕西农业科学, 2010, 56(1): 126-130.

Ma J, An Y P, Wang C F, Zhang W Y. Research progress of genetic diversity. Shaanxi Agricultural Sciences, 2010, 56(1): 126-130. (in Chinese)

[3]王胜军, 陆作楣, 万建民. 采用表型和分子标记聚类研究杂交籼稻亲本的遗传多样性. 中国水稻科学, 2006, 20(5): 475-480.

Wang S J, Lu Z M, Wan J M. Genetic diversity of parental lines in indica hybrid rice based on phenotypic characters and SSR cluster analysis. Chinese Journal of Rice Science, 2006, 20(5): 475-480. (in Chinese)

[4]应杰政, 施勇烽, 庄杰云, 薛庆中. 用微卫星标记评估中国水稻主栽品种的遗传多样性. 中国农业科学, 2007, 40(4): 649-654.

Ying J Z, Shi Y F, Zhuang J Y, Xue Q Z. Microsatellite marker evaluation on genetic diversity of the major commercial rice varieties in China. Scientia Agricultura Sinica, 2007, 40(4): 649-654. (in Chinese)

[5]赵庆勇, 张亚东, 朱镇, 赵凌, 陈涛, 周丽慧, 王才林. 采用SSR标记和表型性状聚类对杂交粳稻亲本的遗传多样性研究. 杂交水稻, 2010, 25(4): 68-74.

Zhao Q Y, Zhang Y D, Zhu Z, Zhao L, Chen T, Zhou L H, Wang C L. Using SSR markers and phenotypic traits of hybrid rice parental clustering genetic diversity. Hybrid Rice, 2010, 25(4): 68-74. (in Chinese)

[6]肖小余, 王玉平, 张建勇, 李仕贵, 荣廷昭. 四川省主要杂交稻亲本的SSR多态性分析和指纹图谱的构建与应用. 中国水稻科学, 2006, 20(1): 1-7.

Xiao X Y, Wang Y P, Zhang J Y, Li S G, Rong T Z. SSR marker-based genetic diver sity fingerprinting of hybrid rice in Sichuan. Chinese Journal of Rice Science, 2006, 20(1): 1-7. (in Chinese)

[7]贺浩华, 罗小金, 朱昌兰, 贺晓鹏, 傅军如, 孙俊立, 张洪亮, 李自超. 杂交稻部分不育系与恢复系的SSR分类. 作物学报, 2006, 32(2): 169-175.

He H H, Luo X J, Zhu C L, He X P, Fu J R, Sun J L, Zhang H L, Li Z C. Classification for some sterile lines and their restorers of hybrid rice with SSR markers. Acta Agronomica Sinica, 2006, 32(2): 169-175. (in Chinese)

[8]彭锁堂, 庄杰云, 颜启传, 郑康乐. 我国主要杂交水稻组合及其亲本SSR标记和纯度鉴定. 中国水稻科学, 2003,17(1): 1-5.

Peng S T, Zhuang J Y, Yan Q C, Zheng K L. SSR markers selection and purity detection of major hybrid rice combinations and their parents in China. Chinese Journal of Rice Science, 2003, 17(1): 1-5. (in Chinese)

[9]张涛, 倪先林, 蒋开锋, 杨乾华, 杨莉, 万先齐, 曹应江, 郑家奎. 水稻功能基因标记遗传距离与杂种优势的相关性研究. 中国水稻科学, 2009, 23(6): 567-572.

Zhang T, Ni X L, Jiang K F, Yang Q H, Yang L, Wan X Q, Cao Y J, Zheng J K. Correlation between genetic distance of molecular marker of functional gene and heterosis in rice. Chinese Journal of Rice Science, 2009, 23(6): 567-572. (in Chinese)

[10]廖伏明, 周坤炉, 阳和华, 徐秋生. 杂交水稻亲本遗传差异及其与杂种优势关系. 中国水稻科学, 1998, 12(4): 193-199.

Liao F M, Zhou K L, Yang H H, Xu Q S. Genetic difference of parents and its relation to heterosis in hybrid rice. Chinese Journal of Rice Science, 1998, 12(4): 193-199. (in Chinese)

[11]Lan Z L, Kai Y L, Zhao M C, Tong M M, Zhong L H, Xin Q L. Dominance, overdominance and epistasis conditionthe heterosisin two heterotic rice hybrids. Genetics, 2008, 108(3): 1725-1742.

[12]Yeh F C, Yang R C. POPGENEVERSION 1.31, Microsoft window-based freeware for population genetic analysis quick user guide. University of Alberta Tim Boyle, Centre for International Forestry Research, Canada. 1999.

[13]Kiura M, Ota T. Mutation and evolution at the molecular level. Genetics, 1973, 73(Suppl): 19-35.

[14]Wright S. Evolution and the Genetics of Populations: Experimental Results and Evolutionary Deductions. The University of Chicago Press, Chicago, Illinois. 1977.

[15]Yoon D B, Kang K H, Kim H J, Ju H G, Kwon S J, Suh J P, Jeong O Y, Ahn S N. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo. Theoretical and Applied Genetics, 2006, 112(6): 1052-1062.

[16]Septiningsih E M, Prasetiyono J, Lubis E, Tai T H, Tjubaryat T, Moeljopawiro S, McCouch S R. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theoretical and Applied Genetics, 2003, 107: 1419-1432.

[17]Tia F, Zhu Z F, Zhang B S, Tan L B, Fu Y C, Wang X K, Sun C Q. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theoretical and Applied Genetics, 2006, 113: 619-629.

[18]Li S B, Zhang Z H, Hu Y, Li C Y, Jiang X, Mao T, Li Y S, Zhu Y G. Genetic dissection of developmental behavior of crop growth rate and its relationships with yield and yield related traits in rice. Plant Science, 2006, 5(170): 911-917.

[19]Mei H W, Xu J L, Li Z K, Yu X Q, Guo L B, Wang Y P, Ying C S, Luo L J. QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2006, 112(4): 648-656.

[20]Xiao J H, Li J M, Yuan L P, McCouch S R, Tanksley S D. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theoretical and Applied Genetics, 1996, 92(6): 637-643.

[21]Xiao J H, Li J M, Silvana G, Ahn S N, Yuan L P, Tanksley S D, McCouch S R. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics, 1998, 150: 899-909.

[22]Mocada P, Martinez C P, Borrero J, Châtel M, Gauch H, Guimaraes E P, Tohmé J, McCouch S R. Quantitative trait loci for yield and yield components in an Oryza sativa× Oryza rufipogon BC2F2 population evaluated in an upland environment. Theoretical and Applied Genetics, 2001, 102(1): 41-52.

[23]Xiao J H, Grandillo S, Ahn S N, McCouch S R, Tanksley S D, Li J M, Yuan L P. Genes from wild rice improve yield. Nature, 1996, 384: 223-224.

[24]Marri P R, Sarla N, Reddy L V, Siddiq E A. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genetics, 2005, 6(33): 1-14.

[25]Thomson M J, Tai T H, McClung A M, Lai X H, Hinga M E, Lobos K B, Xu Y, Martinez C P, McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theoretical and Applied Genetics, 2003, 107: 479-493.

[26]Xu J L, Xue Q Z, Luo L J, Li Z K. QTL dissection of panicle number per plant and spikelet number per panicle in rice (Oryza sativa L.). Journal of Genetics and Genomics, 2001, 28(8): 752-759.

[27]Tan L, Liu F, Xue W, Wang G, Ye S, Zhu Z, Fu Y, Wang X, Sun C. Development of Oryza rufipogon and O. sativa introgression lines and assessment for yield-related quantitative trait loci. Journal of Integrative Plant Biology, 2007, 49: 871-884.

[28]Cho Y C, Suh J P, Choi I S. QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon. Treat of Crop Research, 2003, 4: 19-29.

[29]Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Fujimoto H, Yuan M, Luo D, Han B, Li J Y. Control of tilling in rice. Nature, 2003, 422: 618-621.

[30]Ayahiko S, Takeshi I, Kaworu E, Takeshi E, Hiromi K, Saeko K, Masahiro Y. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008, 40(8): 1023-1028.

[31]Xing Y Z, Tang W J, Xue W Y, Xu C G, Zhang Q F. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theoretical and Applied Genetics, 2008, 116(6): 789-796.

[32]Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the United States America, 2003, 100(5): 2574-2579.

[33]Zhang Q F, Gao Y J, Saghai Maroof M A. Molecula rdivergence and hybrid performance in rice. Molecular Breeding, 1995, 1: 133-142.

[34]王三良, 许可. 我国籼型杂交水稻育种现状、问题与对策. 杂交水稻, 1996(3): 1-4.

Wang S L, Xu K. Current status and strategy or indica hybrid ricebreeding in China. Hybrid Rice, 1996(3): 1-4. (in Chinese)

[35]段世华, 毛加宁, 朱英国. 用微卫星DNA标记对我国杂交水稻主要恢复系遗传差异的检测分析. 遗传学报, 2002, 29(3): 250-254.

Duan S H, Mao J N, Zhu Y G. Genetic variation of main restorer lines of hybrid rice in China was revealed by microsatellite marker. Acta Genetica Sinica, 2002, 29(3): 250-254. (in Chinese)

[36]朱作峰, 孙传清, 付永彩, 张培江, 王象坤. 用SSR 标记比较亚洲栽培稻与普通野生稻的遗传多样性. 中国农业科学, 2002, 35(12): 1437-1441.

Zhu Z F, Sun C Q, Fu Y C, Zhang P J, Wang X K. Comparison of thegenetic diversity of common wild rice and cultivated rice using SSR marker. Scientia Agricultura Sinica, 2002, 35(12): 1437-1441. (in Chinese)

[37]唐梅, 何光华, 裴炎, 杨光伟. 中籼杂交稻遗传多样性的RAPD分析. 西南农业学报, 2002, 15(3): 7-9.

Tang M, He G H, Pei Y, Yang G W. Genetic diversity in semilate indica hybrid rice as revealed by RAPD. Southwest China Journal Agricultural Sciences, 2002, 15(3): 7-9. (in Chinese)

[38]李云海, 肖晗, 张春庆, 胡国成, 于永红, 贾继增, 孙宗修. 用微卫星DNA标记检测中国主要杂交水稻亲本的遗传差异. 植物学报, 1999, 41(10): 1061-1066.

Li Y H, Xiao H, Zhang C Q, Hu G C, Yu Y H, Jia J Z, Sun Z X. Genetic variation of main parents of hybrid rice in china was revealed with simple sequence repeat marker. Acta Botanica Sinica, 1999, 41(10): 1061-1066. (in Chinese)

[39]张涛, 郑家奎, 徐建第, 蒋开锋, 吴先军, 汪旭东. 香稻品种的遗传多样性研究. 中国农业科学, 2008, 41(3): 625-635.

Zhang T, Zheng J K, Xu J D, Jiang K F, Wu X J, Wang X D. Genetic diversity of aromatic rice varieties based on markers of functional genes and SSR. Scientia Agricultura Sinica, 2008, 41(3): 625-635. (in Chinese)

[40]刘殊, 程慧, 王飞, 朱英国. 我国杂交水稻主要恢复系的DNA多态性研究. 中国水稻科学, 2002, 16(1): 1-5.

Liu S, Cheng H, Wang F, Zhu Y G. DNA polymorphism of main restorer lines of hybrid rice in China. Chinese Journal of Rice Science, 2002, 16(1): 1-5. (in Chinese)

[41]赵勇, 杨凯, Akbar A1i Cheema, 翁跃进. 利用水稻功能基因SSR标记鉴定水稻种质资源. 中国农业科学, 2002, 35(4): 349-353.

Zhao Y, Yang K, Cheema A A, Weng Y J. Evaluation of rice germplasm using SSR markers of functional gene in rice. Scientia Agricultura Sinica, 2002, 35(4): 349-353. (in Chinese)

[42]杨旭, 谭学林. 滇型杂交粳稻主要亲本的SSR指纹图谱及其遗传差异分析. 杂交水稻, 2009, 24(6): 54-58.

Yang X, Tan X L. SSR fingerprint and genetic diversity of major parents of dian-type japonica hybrid rice. Hybrid Rice, 2009, 24(6): 54-58. (in Chinese)

[43]张春红, 李金州, 朱镇, 张亚东, 赵凌, 王才林. 利用SSR标记和表型性状聚类分析食味优良粳稻多样性. 中国水稻科学, 2009, 23(6): 573-582.

Zhang C H, Li J Z, Zhu Z, Zhang Y D, Zhao L, Wang C L. Cluster analysis on good eating quality japonica rice (Oryza sativa) based on SSR markers and phenotypic traits. Chinese Journal of Rice Science, 2009, 23(6): 573-582. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[12] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[13] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[14] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[15] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!