Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (22): 4633-4645.doi: 10.3864/j.issn.0578-1752.2013.22.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Advances in Study on Food Legumes Resistance Breeding in China

 DUAN  Can-Xing, ZHU  Zhen-Dong, SUN  Su-Li, WANG  Xiao-Ming   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
  • Received:2013-05-17 Online:2013-11-15 Published:2013-08-01

Abstract: As a kind of traditional food resources of human, food legumes are important crops in adjustment of planting structure, foreign exchange-earning and increasing the income of mountain farmers in China. Diseases and insect pests often lead to a serious decline in yield and quality of food legumes. The cultivation and utilization of resistant cultivars is the most economical, safe and effective method for controlling pests. So for, more than ten thousand food legumes germplasm have been identified and evaluated for resistance to diseases and pests in China, and some resistant accessions were screened out. Resistance inheritance and gene mapping were conducted. Some resistant varieties were cultivated and deployed. However, compared with the major crops, weak basal and lagged researches on the food legumes resistance breeding result in lack of cultivars with high-multi resistance and high yield and quality. In this paper, studies on food legume germplasm screening and evaluation for resistance, resistance inheritance, discovery and mapping of resistance genes and breeding resistant cultivar were reviewed. Several important directions for the future researches were prospected. The main aim is to supply useful information so as to promote the development of breeding for resistant food legume cultivars in China.

Key words: food legume , resistance , breeding

[1]刘慧. 中国食用豆贸易现状与前景展望. 中国食物与营养, 2012, 18(8): 45-49.

Liu H. Situation of Chinese pulse trade and its development prospect. Food and Nutrition in China, 2012, 18(8): 45-49. (in Chinese)

[2]王晓鸣, 朱振东, 段灿星, 宗绪晓. 蚕豆豌豆病虫害鉴别与控制技术. 北京: 中国农业科学技术出版社, 2007.

Wang X M, Zhu Z D, Duan C X, Zong X X. Identification and Control Technology of Diseases and Insect Pests in Faba Bean and Pea. Beijing: China Agriculture Science and Technology Press, 2007. (in Chinese)

[3]朱振东, 段灿星. 绿豆病虫害鉴定与防治手册. 北京: 中国农业科学技术出版社, 2012.

Zhu Z D, Duan C X. Identification and Control Manual of Mungbean Diseases and Insect Pests. Beijing: China Agriculture Science and Technology Press, 2012. (in Chinese)

[4]刘旭明, 金达生, 程须珍, 武小菲, 王素华. 绿豆种质资源抗豆象鉴定研究初报. 作物种质资源, 1998, 2: 35-37.

Liu X M, Jin D S, Cheng X Z, Wu X F, Wang S H. Preliminary evaluation of mungbean germplasm for resistance to Callosobruchus chinensis L.. Crop Germplasm Resoursces, 1998, 2: 35-37. (in Chinese)

[5]程须珍, 王素华, 金达生, 王泮龙, 杨又迪. 绿豆抗豆象育种品系综合评价. 植物遗传资源学报, 2003, 4(2): 110-113.

Cheng X Z, Wang S H, Jin D S, Wang P L, Yang Y D. Evaluation on mungbean breeding lines for resistance to bruchid. Journal of Plant Genetic Resources, 2003, 4(2): 110-113. (in Chinese)

[6]Fujii K, Miyazaki S. Infestation resistance of wild legumes (Vigna sublobata) to azuki bean weevil, Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) and its relationship with cytogenetic classification. Applied Entomology and Zoology, 1987, 22(2): 229-230.

[7]Talekar N S, Lin C L. Characterization of Callosobruchus chinensis (Coleoptera: Bruchidae) resistance in mungbean. Journal of Economic Entomology, 1992, 85: 1150-1153.

[8]Lambrides C J, Imrie B C. Susceptibility of mungbean varieties to the bruchid species Callosobruchus maculatus (F.), C. phaseoli (Gyll.), C. chinensis (L.), and Acanthoscelides obtectus (Say.) (Coleoptera: Chrysomelidae). Australian Journal of Agricultural Research, 2000, 51: 85-89.

[9]Somta C, Somta P, Tomooka N, Ooi P A C, Vaughan D A, Srinives P. Characterization of new sources of mungbean (Vigna radiata (L.) Wilczek) resistance to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). Journal of Stored Products Research, 2008, 44: 316-321.

[10]魏淑红. 全国小豆种质资源抗尾孢菌叶斑病鉴定研究. 黑龙江农业科学, 2000, 3: 20-21.

Wei S H. Resistance evaluation of national adzuki bean germplasm to leaf spot caused by Cerocospora canescens. Heilongjiang Agricultural Science, 2000, 3: 20-21. (in Chinese)

[11]曹如槐, 王晓玲, 南城虎, 李怡琳, 王晓鸣. 小豆种质资源对锈病的抗性鉴定研究. 植物病理学报, 1991, 21(3): 180.

Cao R H, Wang X L, Nan C H, Li Y L, Wang X M. Studies on resistant identification to the rust in adzuki bean germplasm resource. Acta Phytopathologica Sinica, 1991, 21(3): 180. (in Chinese)

[12]喻少帆, 金文林, 张清润, 陈学珍, 郭明华. 小豆种质资源抗白粉病鉴定. 北京农业科学, 1997, 15(3): 40-44.

Yu S F, Jin W L, Zhang Q R, Chen X Z, Guo M H. Identification of adzuki bean germplasm resources to powdery mildew. Beijing Agricultural Sciences, 1997, 15(3): 40-44. (in Chinese)

[13]朱振东, 王晓鸣. 小豆疫霉茎腐病病原菌鉴定及抗病资源筛选. 植物保护学报, 2003, 3(9): 289-294.

Zhu Z D, Wang X M. Identification of pathogen causing phytophthora stem rot of adzuki bean and screening for resistant germplasm. Journal of Plant Protection, 2003, 3(9): 289-294. (in Chinese)

[14]Tomooka N, Kashiwaba K, Vaughan D A, Ishimoto M, Egawa Y. The effectiveness of evaluating wild species: Searching for sources of resistance to bruchid beetles in the genus Vigna subgenus Ceratotropis. Euphytica, 2000, 115: 27-41.

[15]Somta P, Kaga A, Tomooka N, Isemura T, Vaughan D A, Srinives P. Mapping of quantitative trait loci for a new source of resistance to bruchids in the wild species Vigna nepalensis Tateishi & Maxted (Vigna subgenus Ceratotropis). Theoretical and Applied Genetics, 2008, 117: 621-628.

[16]王素. 菜豆资源根腐病和病毒病的抗性鉴定简报. 作物品种资源, 1994, 3: 40.

Wang S. Identification of resistance to root rot and virus of common bean germplasm. Crop Germplasm Resoursces, 1994, 3: 40. (in Chinese)

[17]王素, 徐兆生, 雷蕾, 吴国顺. 荚用菜豆优异资源的鉴定评价. 作物品种资源, 1996, 3: 17-19.

Wang S, Xu Z S, Lei L, Wu G S. Identification and evaluation of pod bean with high quality. Crop Germplasm Resoursces, 1996, 3: 17-19. (in Chinese)

[18]王晓鸣, 李怡琳, 李淑英. 菜豆种质资源对炭疽病抗性鉴定研究. 作物品种资源, 1989(2): 18-19.

Wang X M, Li Y L, Li S Y. Study on identification of resistance to anthracnose of common bean germplasm. Crop Germplasm Resoursces, 1989(2): 18-19. (in Chinese)

[19]冯国军, 杨文月, 王杰, 刘大军, 叶永亮. 菜豆种质资源对炭疽病的抗性鉴定研究. 北方园艺, 2008(1): 222-223.

Feng G J, Yang W Y, Wang J, Liu D J, Ye Y L. Study on germplasm of Phaseouus vulgaris L. resistance to anthracnose. Northern Horticulture, 2008(1): 222-223. (in Chinese)

[20]王坤, 王晓鸣, 朱振东, 张晓艳, 王述民. 菜豆炭疽菌生理小种鉴定及普通菜豆种质的抗性评价. 植物遗传资源学报, 2008, 9(2): 168-172.

Wang K, Wang X M, Zhu Z D, Zhang X Y, Wang S M. Identification of Colletotrichum lindemuthianum races and bean germplasm evaluation for anthracnose resistance. Journal of Plant Genetic Resources, 2008, 9(2): 168-172. (in Chinese)

[21]古瑜, 韩启厚, 王武台, 李素文, 孙德岭, 吴锋. 菜豆抗炭疽病基因SCAR标记在品种抗性鉴定中的应用. 园艺学报, 2011, 38(5): 911-920.

Gu Y, Han Q H, Wang W T, Li S W, Sun D L, Wu F. Application of common bean anthracnose resistance gene SCAR markers in snap bean disease resistance identification. Acta Horticulturae Sinica, 2011, 38(5): 911-920. (in Chinese)

[22]张婷, 胡国富, 肖子恒, 李鹤春, 詹云. 菜豆(油豆角)炭疽病菌的分离鉴定及抗病资源筛选. 中国蔬菜, 2012(22): 75-80.

Zhang T, Hu G F, Xiao Z H, Li H C, Zhan Y. Isolation and identification of colletotrichum and screening of anthracnose resistant varieties from snap bean. China Vegetables, 2012(22): 75-80. (in Chinese)

[23]Schwartz H F, Pastor-Corrales M A, Singh S P. New sources of resistance to anthracnose and angular leaf spot of beans (Phaseolus vulgaris L.). Euphytica, 1982, 31: 741-754.

[24]Fernández M T, Fernández M, Casares A, Rodriguez R, Fueyo M. Bean germplasm evaluation for anthracnose resistance and characterization of agronomic traits: A new physiological strain of Colletotrichum lindemuthianum infecting Phaseolus L. in Spain. Euphytica, 2000, 114: 143-149.

[25]菜豆种质资源主要性状鉴定子专题组. 菜豆品种资源枯萎病苗期抗病性鉴定. 作物品种资源, 1992, 2: 30-31.

Focus group of bean germplasm resources identification of main characters. Identification of wilt resistance of common bean germplasm at the seedling. Crop Germplasm Resoursces, 1992, 2: 30-31. (in Chinese)

[26]赵承玉, 喻大昭, 喻小珍. 蚕豆种质资源对褐斑病抗性鉴定研究. 湖北植保, 1995, 5: 3-5.

Zhao C Y, Yu D Z, Yu X Z. Identification of resistance to Ascochyta blight in faba bean germplasm. Hubei Plant Protection, 1995, 5: 3-5. (in Chinese)

[27]梁训义, 周惠静, 王政逸. 蚕豆种质资源对赤斑病的抗性鉴定与筛选. 浙江农业大学学报, 1992, 18(3): 37-42.

Liang X Y, Zhou H J, Wang Z Y. Screening and evaluation on the resistance of Vicia fata germplasm accessions to chocolate spot caused by Botrytis fatae. Journal of Zhejiang Agricultural University, 1992, 18(3): 37-42. (in Chinese)

[28]李月秋, 彭宏梅, 梁仙, 羊国安, 包世英, 王丽萍. 我国蚕豆品种资源对蚕豆锈病的抗性鉴定. 植物遗传资源科学, 2002, 3(1): 45-48.

Li Y Q, Peng H M, Liang X, Yang G A, Bao S Y, Wang L P. Evaluation of rust resistance of broad bean varieties in China. Journal of Plant Genetic Resources, 2002, 3(1): 45-48. (in Chinese)

[29]王海飞, 宗绪晓. 蚕豆种质资源、抗病育种和QTL定位及抗逆性研究进展. 植物遗传资源学报, 2011, 12(2): 259-270.

Wang H F, Zong X X. Advances in research of genetic resources, breeding and QTL for disease resistance and resistance to abiotic stresses on Vicia faba L.. Journal of Plant Genetic Resources, 2011, 12(2): 259-270. (in Chinese)

[30]Sillero J C, Moreno M T, Rubiales D. Characterization of new sources of resistance to Uromyces viciae-fabae in a germplasm collection of Vicia faba. Plant Pathology, 2000, 49: 389-395.

[31]黄燕. 蚕豆赤斑病病原菌的鉴定及抗性资源筛选[D]. 秦皇岛: 河北科技师范学院, 2012.

Huang Y. Identification of pathogens causing chocolate spot on broad bean (Vicia fabae) and resistance resource screening[D]. Qinhuangdao: Hebei Normal University of Science and Technology, 2012. (in Chinese)

[32]Bond D A, Jellis G J, Rowland G G, Guen J L, Robertson L D, Khalil S A, Li J L. Present status and future strategy in breeding faba beans (Vicia faba L.) for resistance to biotic and abiotic stresses. Euphytica, 1994, 73: 151-166.

[33]王信, 王晓鸣, 杨家荣, 亓鹏. 蚕豆和豌豆对菜豆黄花叶病毒引致病毒病的抗性研究. 作物杂志, 2007, 2: 55-58.

Wang X, Wang X M, Yang J R, Qi P. Study of faba bean and pea resistance to bean yellow mosaic virus. Crops, 2007, 2: 55-58. (in Chinese)

[34]Gadh I P S, Bernier C C. Resistance in faba bean (Vicia faba ) to bean yellow mosaic virus. Plant Disease, I984, 68: 109-111.

[35]Kumari S G, Makkauk K M. Differentiation among bean leaf roll virus susceptible and resistant lentil and faba bean genotypes on the basis of virus movement and multiplication. Journal of Phytopathology, 2003, 151: 19-25.

[36]庞雯, 杨示英, 宗绪晓, 蔡庆生, 韦广天. 广西原产和外引蚕豆种质资源鉴定评价. 植物遗传资源科学, 2002, 3(4): 39-43.

Pang W, Yang S Y, Zong X X, Cai Q S, Wei G T. Evaluation of indigenous and introduced faba bean accessions in Guangxi. Journal of Plant Genetic Resources, 2002, 3(4): 39-43. (in Chinese)

[37]彭化贤, 姚革, 贾瑞林, 梁洪云. 豌豆抗白粉病资源鉴定研究. 西南农业大学学报, 1991, 13(4): 384-386.

Peng H X, Yao G, Jia R L, Liang H Y. Studies on resistance to powdery mildew in pea. Journal of Southwest Agricultural University, 1991, 13(4): 384-386. (in Chinese)

[38]曾亮, 李敏权, 杨晓明. 豌豆种质资源白粉病抗性鉴定. 草原与草坪, 2012, 32(4): 35-38.

Zeng L, Li M Q, Yang X M. Identification of resistance of peas resources to powdery mildew. Grassland and Turf, 2012, 32(4): 35-38. (in Chinese)

[39]王仲怡, 包世英, 段灿星, 宗绪晓, 朱振东. 豌豆抗白粉病资源筛选及分子鉴定. 作物学报, 2013, 39(6): 1030-1038.

Wang Z Y, Bao S Y, Duan C X, Zong X X, Zhu Z D. Screening and molecular identification of resistance to powdery mildew in pea germplasm. Acta Agronomica Sinica, 2013, 39(6): 1030-1038. (in Chinese)

[40]Davidson J A, Krysinska-Kaczmarek M, Kimber R B E, Ramsey M D. Screening field pea germplasm for resistance to downy mildew (Peronospora viciae) and powdery mildew (Erysiphe pisi). Australasian Plant Pathology, 2004, 33: 413-417.

[41]Rana J C, Banyal D K, Sharma K D, Sharma M K, Gupta S K, Yadav S K. Screening of pea germplasm for resistance to powdery mildew. Euphytica, 2013, 189: 271-282.

[42]宋刚, 徐玉明. 豌豆品种抗根腐病鉴定初报. 杂粮作物, 2001, 21(4): 40-41.

Song G, Xu Y M. Identification of resistance to root rot in pea varieties. Rain Fed Crops, 2001, 21(4): 40-41. (in Chinese)

[43]王志刚. 豌豆资源类型筛选抗病性鉴定与利用评价. 内蒙古农业科技, 2003(1): 12-13.

Wang Z G. Evaluation and utilization of pea resources resistance to disease. Inner Mongolia Agricultural Science and Technology, 2003(1): 12-13. (in Chinese)

[44]连荣芳, 王梅春, 墨金萍, 肖贵. 豌豆种质资源抗根腐病鉴定及利用价值分析. 作物杂志, 2012, 6: 111-114.

Lian R F, Wang M C, Mo J P, Xiao G. Identification and analysis of utilization value of pea germplasm resistance to root rot. Crops, 2012, 6: 111-114. (in Chinese)

[45]Grunwald N J, Coffman V A, Kraft J M. Sources of partial resistance to Fusarium root rot in the Pisum core collection. Plant Disease, 2003, 87: 1197-2001.

[46]Infantino A, Kharrat M, Riccioni L, Coyne C J, McPhee K E, Grunwald N J. Screening techniques and sources of resistance to  root diseases in cool season food legumes. Euphytica, 2006, 147: 201-221.

[47]程须珍. 国家食用豆产业技术体系建设成效显著. 植物遗传资源学报, 2011, 12(3): 封底.

Cheng X Z. Great progress has been made in constructing national food legumes industry technology system. Journal of Plant Genetic Resources, 2011, 12(3): back cover. (in Chinese)

[48]Kitamura K, Ishimoto M, Sawa M. Inheritance of resistance to infestation with adzuki bean weevil in Vigna sublobata and successful incorporation to V. radiata. Japanese Journal of Breeding, 1988, 38: 459-464.

[49]Somta P, Ammaranan C, Ooi P A C, Srinives P. Inheritance of seed resistance to bruchids in cultivated mungbean (Vigna radiata L. Wilczek). Euphytica, 2007, 155: 47-55.

[50]Young N D, Kumar L, Menancio-Hautea D, Danesh D, Talekar N S, Shanmugasundaram S, Kim D H. RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata L. Wilczek). Theoretical and Applied Genetics, 1992, 84: 839-844.

[51]Kaga A, Ishimoto M. Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean (Vigna radiata L. Wilczek). Molecular and General Genetics, 1998, 258: 378-384.

[52]Miyagi M, Humphry M, Ma Z Y, Lambrides C J, Bateson M, Liu C J. Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiata L. Wilczek). Theoretical and Applied Genetics, 2004, 110: 151-156.

[53]程须珍, 杨又迪. RAPD分析在绿豆亲缘关系研究中的应用. 遗传, 1998, 20(增刊): 27-29.

Cheng X Z, Yang Y D. Study of mungbean genetic relationship using RAPD markers. Hereditas, 1998, 20(Suppl.): 27-29. (in Chinese)

[54]程须珍, 王素华, 吴绍宇, 周吉红. 绿豆抗豆象育种后代F2群体遗传变异分析. 植物遗传资源学报, 2004, 5(4): 364-368.

Cheng X Z, Wang S H, Wu S Y, Zhou J H. Genetic analysis on mungbean breeding F2 population for resistance to bruchid. Journal of Plant Genetic Resources, 2004, 5(4): 364-368. (in Chinese)

[55]孙蕾, 程须珍, 王素华, 王丽侠, 刘长友, 梅丽, 徐宁. 栽培绿豆V2709抗豆象特性遗传及基因初步定位. 中国农业科学, 2008, 41(5): 1291-1296.

Sun L, Cheng X Z, Wang S H, Wang L X, Liu C Y, Mei L, Xu N. Heredity analysis and gene mapping of bruchid resistance of a mungbean cultivar V2709. Scientia Agricultura Sinica, 2008, 41(5): 1291-1296. (in Chinese)

[56]程须珍, 王素华, 吴绍宇, 周吉红, 王述民, 杨又迪. 绿豆抗豆象基因PCR标记的构建与应用. 中国农业科学, 2005, 38(8): 1534-1539.

Cheng X Z, Wang S H, Wu S Y, Zhou J H, Wang S M, Yang Y D. Tagging and utilization of bruchid resistance gene using PCR markers in mungbean. Scientia Agricultura Sinica, 2005, 38(8): 1534-1539. (in Chinese)

[57]马丽萍, 程须珍, 张辉. 野生绿豆种质资源TC1966抗豆象基因的AFLP标记研究. 西南农业学报, 2005, 18(5): 629-633.

Ma L P, Cheng X Z, Zhang H. Study on AFLP marker related to bruchid resistance gene in wild mungbean germplasm TC1966. Southwest China Journal of Agricultural Sciences, 2005, 18(5): 629-633. (in Chinese)

[58]Mei L, Cheng X Z, Wang S H, Wang L X, Liu C Y, Sun L, Xu N, Humphry M E, Lambrides C J, Li H B, Liu C J. Relationship between bruchid resistance and seed mass in mungbean based on QTL analysis. Genome, 2009, 52(7): 589-596.

[59]Chaitieng B, Laosuwan P, Wongkaew S. Inheritance of powdery mildew resistance in mungbean [Vigna radiata (L.) Wilczek]. Thailand Journal of Agricultural Science, 2002, 36: 73-78.

[60]Kute N S, Deshmukh R B, Patil J V. Inheritance of resistance to powdery mildew (Erysiphe polygoni D. C.) in mungbean (Vigna radiata (L.) Wilczek). Legume Research, 2003, 26: 24-27.

[61]Singh G, Singh S, Sheoran O P. Inheritance of resistance to mungbean yellow mosaic virus (MYMV) in green gram [Vigna radiata (L.) Wilczek]. Legume Research, 2013, 36(2): 131-137.

[62]Melotto M, Kelly J D. An allelic series at the Co-1 locus coilditioning resistance to anthracnose in common bean of Andean origin. Euphytica, 2000, 116: 143-149.

[63]Alzate-Matin A L, Arruda K M, de Barros E G Moreira M A. Allelism studies for anthracnose resistance genes of common bean cultivar AND 277. Annual Report of the Bean Improvement Cooperative, 2003, 46: 173-174.

[64]Goncalves-Vidigal M C, Kelly J D. Inheritance of anthracnose resistance in the common bean cultivar Widusa. Euphytica, 2006, 151: 411-419.

[65]Melotto M, Coelho M E, Pedrosa-Harand A, Kelly J D, Camargo L E A. The anthracnose resistance locus Co-4 of common bean is located on chromosome 3 and contains putative disease resistance related genes. Theoretical and Applied Genetics, 2004, 109: 122-134.

[66]Young R A, Melotto M, Nodari R O, Kelly J D. Marker-assisted dissection of the oligo genic anthracnose resistance in the common bean cultivar ‘G2333’. Theoretical and Applied Genetics, 1998, 96: 87-94.

[67]Alzate-Marin A L, Souza K A, Silva M G M, Oliveira E J, Moreira M A, Barros E G. Genetic characterization of anthracnose resistance genes Co-43 and Co-9 in common bean cultivar tlalneplantla 64 (PI207262). Euphytica, 2007, 154: 1-8.

[68]Goncalves-Vidigal M C, Sakiyama N S, Vidigal-Filho P S, Amaral-Junior A T, Poletine J P, Oliveira V R. Resistance of common bean cultivar AB 136 to races 31 and 69 of Colletotrichum lindemuthianum: the Co-6 locus. Crop Breeding and Applied Biotechnology, 2001, 1: 99-104.

[69]Alzate-Marin A L, deAlmeida K S, deBarros E G, Moreira M A. Identification of a recessive gene conferring resistance to anthracnose in common bean lines derived from the differential cultivar AB 136. Annual Report of the Bean Improvement Cooperative, 2000, 44: 117-118.

[70]Alzate-Marin A L, Costa M R, Arruda K M, Barros E G, Moreira M A. Characterization of the anthracnose resistance locus present in cultivar Ouro Negro (Honduras 35). Euphytica, 2003, 133: 165-169.

[71]Goncalves-Vidigal M C, Silva C R, Filho P S V, Gonela A,  Kvitschal M V. Allelic relationships of anthracnose (Colletotrichum lindemuthianum) resistance in the common bean (Phaseolus vulgaris L.) cultivar Michelite and the proposal of a new anthracnose resistance gene, Co-11. Genetics and Molecular Biology, 2007, 30(3): 589-593.

[72]Goncalves-Vidigal M C, Lacanallo G F, Vidigal Filho P S. A new gene conferring resistance to anthracnose in common bean (Phaseolus vulgaris L.) cultivar ‘Jalo Vermelho’. Plant Breeding, 2008, 127(6): 592-596.

[73]Goncalves-Vidigal M C, Vidigal Filho P S, Medeiros A F. Common bean landrace Jalo Listras Pretas is the source of a new Andean anthracnose resistance gene. Crop Science, 2009, 49: 133-138.

[74]王坤, 王晓鸣, 朱振东, 赵晓彦, 张晓艳, 王述民. 以SSR标记对普通菜豆抗炭疽病基因定位. 作物学报, 2009, 35(3): 432-437.

Wang K, Wang X M, Zhu Z D, Zhao X Y, Zhang X Y, Wang S M. Mapping of a novel anthracnose resistance gene using SSR markers in common bean (Phaseolus vulgaris L.). Acta Agronomica Sinica, 2009, 35(3): 432-437. (in Chinese)

[75]陈明丽. 普通菜豆SSR标记开发及抗炭疽病基因分子标记定位[D]. 北京: 中国农业科学院作物科学研究所, 2011.

Chen M L. SSR marker exploitation and molecular mapping of anthracnose resistance gene in common bean (Phaseolus vulgaris L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)

[76]Queiroz V T, Sousa C S, Costa M R, Sanglad D A, Arruda K M A, Souza T L P O, Ragagnin V A, Barros E G, Moreira M A. Development of SCAR markers linked to common bean anthracnose resistance genes Co-4 and Co-6. Annual Report of the Bean Improvement Cooperative, 2004, 47: 249-250.

[77]Campa A, Rodríguez-Suárez C, Paneda A, Giraldez R, Ferreira J J. The bean anthracnose resistance gene Co-5 is located in linkage group B7. Annual Report of the Bean Improvement Cooperative, 2005, 48: 68-69.

[78]Rodríguez-Suárez C, Ferreira J J, Campa A, Paneda A, Giradles R. Molecular mapping and intra-cluster recombination between anthracnose race-specific resistance genes in the common bean differential cultivars Mexico 222 and Widusa. Theoretical and Applied Genetics, 2008, 116: 807-814.

[79]赵晓彦, 王晓鸣, 王述民. 普通菜豆抗炭疽病基因SCAR标记鉴 定. 作物学报, 2007, 33(11): 1815-1821.

Zhao X Y, Wang X M, Wang S M. Identification of anthracnose resistant genes based on SCAR markers in common bean (Phaseolus vulgaris L.). Acta Agronomica Sinica, 2007, 33(11): 1815-1821. (in Chinese)

[80]李梅. 菜豆抗炭疽病育种抗病基因分析初报. 天津农业科学, 2008, 14(6): 73-75.

Li M. Preliminary study on anthracnose resistance breeding in common bean. Journal of Tianjin Agricultural Sciences, 2008, 14(6): 73-75. (in Chinese)

[81]Gonçalves-Vidigal M C, Meirelles A C, Poletine J P, De Sousa L L, Cruz, A S, Nunes, M P, Lacanallo G F, Vidigal P S. Genetic analysis of anthracnose resistance in ‘Pitanga’ dry bean cultivar. Plant Breeding, 2012, 131: 423-429.

[82]Harland S C. Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity, 1948, 2: 263-269.

[83]Heringa R J, van Norel A, Tazelaar M F. Resistance to powdery mildew (Erisyphe polygoni D.C.) in peas (Pisum sativum L.). Euphytica, 1969, 18: 163-169.

[84]Fondevilla S, Torres A M, Moreno M T, Rubiales D. Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breeding Science, 2007, 57: 181-184.

[85]Srivastava R K, Mishra S K, Singh A K, Mohapatra T. Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene ‘er1’ in pea (Pisum sativum L.). Euphytica, 2012, 186(3): 855-866.

[86]Katoch V, Sharma S, Pathania S, Banayal D K, Sharma S K, Rathour R. Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Molecular Breeding, 2010, 25: 229-237.

[87]王阔, 郭瑞林. 豫绿3号选育、利用技术与方法. 杂粮作物, 2003, 23(6): 328-330.

Wang K, Guo R L. Selection and utilization techniques of a mung bean variety ‘Yulu No. 3’. Rain Fed Crops, 2003, 23(6): 328-330. (in Chinese)

[88]朱慧珺, 赵雪英, 阎虎斌, 高伟, 张耀文. 抗豆象绿豆新品种晋绿豆7号的选育. 山西农业科学, 2012, 40(6): 606-607, 612.

Zhu H J, Zhao X Y, Yan H B, Gao W, Zhang Y W. Breeding of bruchid resistant mung bean variety Jinlyudou 7. Journal of Shanxi Agricultural Sciences, 2012, 40(6): 606-607, 612. (in Chinese)

[89]袁星星, 崔晓艳, 陈华涛, 顾和平, 张红梅, 陈新. 黄种皮绿豆新品种苏绿3号选育及高产栽培技术. 江苏农业科学, 2011, 39(5): 125-126.

Yuan X X, Cui X Y, Chen H T, Gu H P, Zhang H M, Chen X. Breeding and high-yield culture technique of a yellow-seeded mungbean variety Sulv 3. Jiangsu Agricultural Sciences, 2011, 39(5): 125-126. (in Chinese) 

[90]刘大军, 叶永亮, 杨仁健, 冯国军. 菜豆新品种哈菜豆10号的选 育. 中国蔬菜, 2011 (20): 101-103.

Liu D J, Ye Y L, Yang R J, Feng G J. A new snap bean variety -‘Hacaidou No.10’. China Vegetables, 2011 (20): 101-103. (in Chinese)

[91]郭建华, 刘学东, 李梅, 刘志娟, 吕彦超. 菜豆新品种连农97-5的选育. 中国蔬菜, 2005 (Z1): 97-98.

Guo J H, Liu X D, Li M, Liu Z J, Lü Y C. A new kidney bean variety - ‘Liannong 97-5’. China Vegetables, 2005 (Z1): 97-98. (in Chinese)

[92]郭建华, 刘学东, 李梅, 刘志娟, 吕彦超. 菜豆新品种连农无筋2号的选育. 中国蔬菜, 2009 (14): 71-73.

Guo J H , Liu X D, Li M, Liu Z J, Lü Y C. A new kidney bean variety - ‘Liannongwujin No.2’. China Vegetables, 2009 (14): 71-73. (in Chinese)

[93]余峡林, 寇思荣, 王思慧, 王春明, 王梅春. 抗根腐病豌豆新品系8711-2选育报告.甘肃农业科技, 1999(7): 8-9.

Yu X L, Kou S R, Wang S H, Wang C M, Wang M C. Breeding of a new pea variety 8711-2 resistance to root rot. Gansu Agricultural Sciences and Technology, 1999(7): 8-9. (in Chinese)

[94]王梅春, 连荣芳, 墨金萍, 王思慧. 甘肃豌豆根腐病研究及抗病育种. 杂粮作物, 2008,  28(4): 272-273.

Wang M C, Lian R F, Mo J P, Wang S H. Research of the pea root rot and resistant breeding in Gansu province. Rain Fed Crops, 2008, 28(4): 272-273. (in Chinese)

[95]Lee Y H, Moon J K, Park K Y, Ku J H, Yun H T, Chung W K, Kim S D, Kim H S, Kim D H, Chung M N. A new mungbean cultivar with bruchid resistance, ‘Jangannogdu’. Korean Journal of Breeding, 2000, 32(3): 296-297.

[96]Silleroa J C, Villegas-Fernándezb A M, Thomasc J, Rojas-Molinaa M M, Emerand A A, Fernández-Apariciob M, Rubialesb D. Faba bean breeding for disease resistance. Field Crops Research, 2010, 115: 297-307.

[97]Coyne C J, Porter L D, Inglis D A, Grünwald N J, McPhee K E, Muehlbauer F J. Registration of W6 26740, W6 26743, and W6 26745 green pea germplasm resistant to Fusarium root rot. Journal of Plant Registrations, 2008, 2(2): 137-139.

[98]McGee R J, Coyne C J, Pilet-Nayel M L, Moussart A, Tivoli B, Barangerc A, Hamon C, Vandemarka G, McPhee K. Registration of pea germplasm lines partially resistant to Aphanomyces root rot for breeding fresh or freezer pea and dry pea types. Journal of Plant Registrations, 2012, 6(2): 203-207.

[99]余娇娇, 段灿星, 李万昌, 朱振东, 王晓鸣. 水稻抗稻飞虱基因遗传与定位研究进展. 植物遗传资源学报, 2011, 12(5): 750-756.

Yu J J, Duan C X, Li W C, Zhu Z D, Wang X M. Advances in inheritance and mapping of rice genes resistance to plant hoppers. Journal of Plant Genetic Resources, 2011, 12(5): 750-756. (in Chinese)

[100]钟代彬, 罗利军, 郭龙彪, 应存山. 栽野杂交转移药用野生稻抗褐飞虱基因. 西南农业学报, 1997, 10(2): 5-9.

Zhong D B, Luo L J, Guo L B, Ying C S. Studies on resistance to brown planthopper (BPH) of hybrid between Oryza sativa and Oryza officinalis. Southwest China Journal of Agricultural Sciences, 1997, 10(2): 5-9. (in Chinese)

[101]Siriwardhane D, Egawa Y, Tomooka N. Cross-compatibility of cultivated adzuki bean (Vigna anguhris) and rice bean (V. umbellata) with their wild relatives. Plant Breeding, 1991, 107(4): 320-325.

[102]Kaga A, Ishii T, Tsukimoto K, Tokoro E, Kamijima O. Comparative molecular mapping in Ceratotropis species using an interspecific cross between azuki bean (Vigna angularis) and rice bean (V. umbellata). Theoretical and Applied Genetics, 2000, 100: 207-213.

[103]Yang T, Bao S Y, Ford R, Jia T J, Guan J P, He Y H, Sun X L, Jiang J Y, Hao J J, Zhang X Y, Zong X X. High-throughput novel microsatellite marker of faba bean via next generation sequencing. BMC Genomics, 2012, 13:602. doi: 10.1186/1471-2164-13-602.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[3] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[4] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[5] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[6] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[7] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[8] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[9] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
[10] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[11] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[12] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[13] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[14] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[15] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!