Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (18): 3826-3833.doi: 10.3864/j.issn.0578-1752.2013.18.011

• HORTICULTURE • Previous Articles     Next Articles

Effects of Zinc Deficiency on Photosynthetic Rate and Chlorophyll Fluorescence Characteristics of Apple Leaves

 FU  Chun-Xia, ZHANG  Yuan-Zhen, WANG  Yan-An, FAN  Xiao-Dan, YAN  Yu-Jing, ZHANG  You-Peng   

  1. College of Life Science, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271018, Shandong
  • Received:2013-06-24 Online:2013-09-15 Published:2013-07-08

Abstract: 【Objective】The purpose of this study is to explore the effects of zinc deficiency on the chlorophyll content, photosynthetic rate and chlorophyll fluorescence characteristics of apple tree leaves, and to reveal the damage mechanism of Zn deficiency to the photosynthetic system of apple leaves.【Method】Normal trees without Zn deficiency symptoms and rosette trees with typical Zn deficiency symptoms (called “little leaf”) in field of ‘Red Fuji’ apple (rootstock Malus hupehensis Rehd) were used as materials, and the zinc content, chlorophyll content, net photosynthesis rate and fluorescence parameters of apple leaves under different Zn stress levels were measured.【Result】Under Zn deficiency, the chlorophyll content, single leaf area and specific leaf weight of apple leaves decreased significantly; the stomatal conductance decreased, intercellular CO2 concentration increased, net photosynthetic rate and water use efficiency also decreased. As the aggravation of Zn deficiency, the original fluorescence Fo rose while Fv/Fo, ΦPSⅡ, qP and Fv’/Fm’ decreased under Zn deficiency. The relative variable flurescence at J-step(VJ) and the ratio of variable fluorescence Fv to the amplitude Fj-Fo at the K-step(Wk) increased, the quantum yield for electron transport further than QA¬ (ETo/ABS), the density of active PSⅡ reaction centers per cross section(RC/CSo) and the performance index on absorption (PI) basis decreased.【Conclusion】Non-stomatal limitation was one of the reasons for the reduction of photosynthesis rate under zinc deficiency. Zn deficiency first caused the damage of oxygen evolving complex (OEC) and then the reactive center of PSⅡ, followed by the inhibited electron transfer of donor side and receptor side of the reaction center at the same time, which finally affected the absorption, transmission and utilization of light energy in apple leaves.

Key words: apple , zinc , leaves , photosynthesis rate , chlorophyll fluorescence

[1]Sommer A L, Lipman C B. Evidence on the indispensable nature of zinc and boron for higher green plants. Plant Physiology, 1926, 1: 231-249.

[2]Vallee B L, Auld D S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry, 1990, 29: 5647-5659.

[3]Chvapil M. New aspects in the biological role of zinc: A stabilizer of macromolecules and biological membranes. Life Sciences, 1973, 13: 1041-1049.

[4]Broadley M R, White P J, Hammond J P, Zelko I, Lux A. Zinc in plants. New Phytologist, 2007, 173: 677-702.

[5]Hacisalihoglu G, Hart J, Wang Y H, Cakmak I, Kochian L V. Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiology, 2003, 131:595-602.

[6]Alloway B J. Zinc in Soil and Crop Nutrition. Belgium and Paris, France: International Zinc Association, 2008: 66-67.

[7]王衍安, 张方爱, 李玲, 范伟国, 李建明, 周广波, 张学东. 苹果小叶病发生规律调查报告. 山东林业科技, 2000, 130(5): 20-26.

Wang Y A, Zhang F A, Li L, Fang W G, Li J M, Zhou G B, Zhang X D. Survey on the litter leaf disease occurrence of apple. Shandong Forestry Science and Technology, 2000, 130(5): 20-26. (in Chinese)

[8]Tavallali V, Rahemi M, Maftoun M, Panahi B, Karimi S, Ramezanian A, Vaezpour M. Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae, 2009, 123(2): 272-279.

[9]Sasaki H, Hirose T, Watanabe Y, Ohsugi R. Carbonic anhydrase activity and CO2-transfer resistance in Zn-deficient rice leaves. Plant Physiology, 1998, 118: 929-934.

[10]Shrotri C K, Rathore V S, Mohanty P. Zinc deficiency effects on photosynthetic pigment content, CO2 fixation, and photosynthetic enzyme activity in bajra (Pennisetum typhoides). National Academy Science Letters, 1989, 12(1): 1-4.

[11]Misra A, Srivastava A K, Srivastava N K, Khan A. Zn-acquisition and its role in growth, photosynthesis, photosynthetic pigments, and biochemical changes in essential monoterpene oil(s) of Pelargonium graveolens. Photosynthetica, 2005, 43(1): 153-155.

[12]Aravind P, Prasad M N V. Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a freshwater macrophyte. Plant Science, 2004, 166: 1321-1327.

[13]李娟, 陈杰忠, 黄永敬, 梁春辉, 黄建昌, 赵春香, 周俊辉. 锌营养在果树生理代谢中的作用研究进展. 果树学报, 2011, 28(4): 668-673.

Li J, Chen J Z, Huang Y J, Liang C H, Huang J C, Zhao C X, Zhou J H. Advances in research on physiology and metabolism of zinc nutrition in fruit tree. Journal of Fruit Science, 2011, 28(4): 668-673. (in Chinese)

[14]Jiang H M, Yang J C, Zhang J F. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environmental Pollution, 2007, 147: 750-756.

[15]Balakrishnan K, Rajendran C, Kulandaivelu G. Differential responses of iron, magnesium, and zinc deficiency on pigment composition, nutrient content, and photosynthetic activity in tropical fruit crops. Photosynthetica, 2001, 38(3): 477-479.

[16]曲桂敏, 黄天栋, 顾曼如, 冷梅, 王春刚. 锌与苹果叶片的显微亚显微结构及其超微分布. 园艺学报, 1993, 20(4): 399-400.

Qu G M, Huang T D, Gu M R, Leng M, Wang C G. Effects of zinc on microstructrue and submicrostructure of apple leaves and the ultramicro distribution of zinc. Acta Horticulturae Sinica, 1993, 20(4); 399-400 (in Chinese)

[17]Kim T, Wetzstein H Y. Cytological and ultrastructural evaluations of zinc deficiency in leaves. Journal of the American Society for Horticultural Science, 2003, 128(2): 171-175.

[18]Wang H, Jin J Y. Photosynthetic rate, chlorophyll fluorescence parameters, and lipid peroxidation of maize leaves as affected by zinc deficiency. Photosynthetica, 2005, 43: 591-596.

[19]Hu H, Sparks D. Zinc deficiency inhibits chlorophyll synthesis and gas exchange in ‘stuart’ pecan. HortScience, 1991, 26(3):267-268.

[20]Gianquinto G, Abu-Rayyan A, Tola L D, Piccotino D, Pezzarossa B. Interaction effects of phosphorus and zinc on photosynthesis, growth and yield of dwarf bean grown in two environments. Plant and Soil, 2000, 220: 219-228.

[21]Chen W R, Yang X E, He Z L, Feng Y, Hu F H. Differential changes in photo synthetic capacity, 77 K chlorophyll fluorescence and chloroplast ultrastructure between Zn-efficient and Zn-inefficient rice genotypes(Oryza sativa) under low zinc stress. Physiologia Plantarum, 2008, 132: 89-101.

[22]Ojeda-Barrios D, Abadía J, Lombardini L, Abadía A,Vázquez S. Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure. Journal of the Science of Food and Agriculture, 2012, 92: 1672-1678.

[23]Tewari R K, Kumar P, Sharma P N. Morphology and physiology of zinc-stressed mulberry plants. Journal of Plant Nutrition and Soil Science, 2008, 171: 286-294.

[24]Wang H, Liu R L, Jin J Y. Effects of zinc and soil moisture on photosynthetic rate and chlorophyll fluorescence parameters of maize. Biologia Plantarum, 2009, 53 (1): 191-194.

[25]Shi G R, Cai Q S. Photosynthetic and anatomic responses of peanut leaves to zinc stress. Biologia Plantarum, 2009, 53 (2): 391-394.

[26]Cherif J, Derbel N, Nakkach M, Bergmann H, Jemal F, Lakhdar Z B. Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. Journal of Photochemistry and Photobiology B: Biology, 2010, 101: 332-339.

[27]Fabien M, Nathalie V, Philippe V, Alain C, Huguette S, Adnae H. Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. Journal of Plant Physiology, 2001, 158: 1137-1144.

[28]Zarcinas B A, Carwright B, Spouncer L R. Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry.  Communications in Soil Science and Plant Analysis, 1987, 18: 131-146.

[29]Arnon D I. Copper enzymes in isolated chloroplasts, polyphenoloxidase in Brta vulgaris. Plant Physiology, 1949, 24: 1-15.

[30]Marschner H. Mineral Nutrition of Higher Plants. 2nd ed. London, UK: Academic Press, 1995.

[31]杜中军, 翟衡, 潘志勇, 解秀芹. 盐胁迫下苹果砧木光合能力及光合色素的变化. 果树学报, 2001,18(4): 200-203.

Du Z J, Zhai H, Pan Z Y, Xie X Q. Change of photosynthetic capability and pigment content of apple rootstocks under salt-stress. Journal of Fruit Science, 2001,18(4): 200-203. (in Chinese)

[32]Xu C C, Li D Q, Zou Q, Zhang J H. Effect of drought on chlorophyll fluorescence and xanthophylls cycle components in winter wheat leaves with different ages. Acta Phytophysiologica Sinica, 1999, 25(1): 29-37.

[33]Li P M, Cheng L L, Gao H Y, Jiang C D, Peng T. Heterogeneous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. Journal of Plant Physiology, 2009, 166, (15): 1607- 1615.

[34]李芳贤, 王金林, 李玉兰, 刁希强. 锌对夏玉米生长发育及产量影响的研究. 玉米科学, 1999(7): 7-77.

Li F X, Wang J L, Li Y L, Diao X Q. Studies on the influence of zinc to the summer corn growth, development and yield. Journal of Maize Sciences, 1999(7): 72-77.(in Chinese)

[35]Khan H R, McDonald G K, Rengel Z. Zinc fertilization and water stress 

affects plant water relations, stomatal conductance and osmotic adjustment in chickpea(Cicer arientinum L.). Plant and Soil, 2004, 267: 271-284.

[36]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Reviews Plant Physiology, 1982, 33: 317-345. 

[37]Sharma P N, Tripathi A, Bisht S S. Zinc requirement for stomatal opening in cauliflower. Plant Physiology, 1995, 107: 751-756.

[38]Sharma C P, Sharma P V. Mineral nutrient deficiencies affect plant water relation. Journal of Plant Nutrition, 1987, 10: 1637-1643.

[39]Appenroth K J, Stöckel J, Srivastava A, Strasser R J. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence. Environmental Pollution, 2001, 115: 49-64.

[40]Wen X G, Qiu N W, Lu Q T, Lu C M . Enhanced thermo tolerance of photosystem Ⅱ in salt-adapted plants of the halophyte Artemisia anethifolia. Planta, 2002, 220: 486-497.

[41]Godde D, Hefer M. Photo-inhibition and light-dependent turnover of the D1 reaction-centre polypeptide of photosystem II are enhanced by mineral-stress conditions. Planta, 1994, 193: 290-299.

[42]Strasser R J, Tsimill-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient.// Papageorgiou G, Govindjee.ed.. Advances in Photosynthesis and Respiration. Netherlands: KAP Press, 2004: 1-42.

[43]Jiang C D, Jiang G M, Wang X, Li L H, Biswas D K, Li Y G. Enhanced photosystem 2 thermo stability during leaf growth of elm (Ulmus pumila) seedlings. Photosynthetica, 2006, 44 (3): 411-418. 

[44]Jiang C D, Gao H Y, Zou Q. Changes of donor and accepter side in photosystem II complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica, 2003, 41: 267-271.

[45]Baiter N R, Femyhough P, Meek I T. Light-dependent inhibition of photosynthetic electron transport by zinc. Physiologia Plantarum, 1982, 56: 217-222.

[46]Aravind P, Prasad M N V. Zinc mediated protection to the conformation of carbonic anhydrase in cadmium exposed Ceratophyllum demersum L. Plant Science, 2005,169: 245-254.
[1] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[5] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[6] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[7] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[8] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[9] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[10] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[11] LÜ ZhiWei,DU Kang,ZHOU ZhiGuo,ZHAO WenQing,HU Wei,ZHAO JianMing,ZHU SuQin,WANG YouHua. Research on Senescence Process and Suitable Indicators of Maize Ear Leaves [J]. Scientia Agricultura Sinica, 2022, 55(12): 2311-2323.
[12] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[13] CuiQing WU,JingXin SUN,PingYi GUO,HongFu WANG,XinHui WU. Effects of Agronomic Managements on Yield and Lodging Resistance of Millet [J]. Scientia Agricultura Sinica, 2021, 54(6): 1127-1142.
[14] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[15] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!