Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (17): 3721-3728.doi: 10.3864/j.issn.0578-1752.2013.17.022

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Effects of Mating Flight on sRNAs Expression in Sexual Matured Virgin Queens (Apis cerana cerana)

 WU  Xiao-Bo, WANG  Zi-Long, SHI  Yuan-Yuan, ZHANG  Fei, ZENG  Zhi-Jiang   

  1. Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045
  • Received:2013-02-06 Online:2013-09-01 Published:2013-04-11

Abstract: 【Objective】The objective of this study is to analyze the influence of flight behaviour on sRNAs expression in matured virgin queens (Apis cerana cerana). 【Method】The sexual matured virgin queens of A. cerana cerana were used as flying group that allow to fly in a certain area and the other group was not. The sRNAs expression differences between the two groups were analyzed by using a high-throughput sequencing method. 【Result】Both of the flying matured virgin queens and non-flying counterparts had a complicated sRNAs population, and that the length of sRNAs varied, 22 nt and 27-29 nt being the predominant length, while the frequence percent of the same RNA was different in the two samples. Combining deep sequencing and bioinformatics analysis, the percent of the common sequences in total sRNAs was 92.79%, but the number of unique sRNAs in the flying queens was more than that in non-flying queens. Matching to known miRNA alignment, a total of 25 known miRNAs were significantly different between them, with 1 up-regulated and 24 down-regulated in the flying matured virgin queens while there were 11 target genes of 19 known miRNA which were expressed differentially between them.【Conclusion】There are a large number of sRNAs changes during the flight process of matured virgin queens which may play an important role in adjusting physiology for mating successfully of virgin queens.

Key words: Apis cerana cerana , queen bee , flight , miRNA

[1]Wossler T C, Jones G E, Allsopp M H, Hepburn R. Virgin queen mandibular gland signals of Apis mellifera capensis change with age and affect honeybee worker responses. Journal of Chemical Ecology, 2006, 32: 1043-1056.

[2]Kocher S D, Richard F J, Tarpy D R, Grozinger C M. Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera). BMC Genomics, 2008, 9: 232.

[3]Kocher S D, Tarpy D R, Grozinger C M. The effects of mating and instrumental insemination on queen honey bee flight behaviour and gene expression. Insect Molecular Biology, 2010, 19(2): 153-162.

[4]吴小波, 张飞, 曾志将. 蜜蜂繁殖冲突与雌性蜜蜂信息素研究进展. 应用昆虫学报, 2012, 49(5): 1372-1377.

Wu X B, Zhang F, Zeng Z J. Advances in understanding of reproduction conflict and pheromones of female bees in Apis. Chinese Journal of Applied Entomology, 2012, 49(5): 1372-1377. (in Chinese)

[5]缪晓青, 吴珍红, 苏荣. 意蜂 (Apis mellifera)蜂王婚飞交尾机制的初探. 华东昆虫学报, 1995, 4(2): 75-78.

Miao X Q, Wu Z H, Su R. A study on nuptial flight and mating mechanism of queens and drones of honeybee. Entomological Journal of East China, 1995, 4(2): 75-78. (in Chinese)

[6]Alaux C, Le Conte Y, Adams H A, Rodriguez-Zas S, Grozinger C M, Sinha S, Robinson G E. Regulation of brain gene expression in honey bees by brood pheromone. Genes, Brain and Behavior, 2009, 8(3): 309-319.

[7]石元元, 田柳青, 张飞, 刘俊峰, 颜伟玉, 曾志将. 蜂王浆对雌性蜜蜂幼虫dynactin p62甲基化影响. 中国农业科学, 2012, 45(23): 4909-4915.

Shi Y Y, Tian L Q, Zhang F, Liu J F, Yan W Y, Zeng Z J. Effect of royal jelly on the DNA methylation of dynactin p62 in female honeybee larvae. Scientia Agricultura Sinica, 2012, 45(23): 4909-4915. (in Chinese)

[8]Lim L P, Glasner M E, Yekta S, Burge C B, Bartel D P. Vertebrate microRNA genes. Science, 2003, 299(5612): 1540.

[9]Wienholds E, Plasterk R H. MicroRNA function in animal development. FEBS Letters, 2005, 579(26): 5911-5922.

[10]Du T, Zamore P D. Beginning to understand microRNA function. Cell Research, 2007, 17(8): 661-663.

[11]Zilberman D, Cao X, Jacobsen S E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 2003, 299(5607): 716-719.

[12]Zheng X, Zhu J, Kapoor A, Zhu J K. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. The EMBO Journal, 2007, 26(6): 1691-1701.

[13]Weaver D B, Anzola J M, Evans J D, Reid J G, Reese J T, Childs K L, Zdobnov E M, Samanta M P, Miller J, Elsik C G. Computational and transcriptional evidence for microRNAs in the honeybee genome. Genome Biology, 2007, 8(6): R97.

[14]Chen X, Yu X, Cai Y, Zheng H, Yu D, Liu G, Zhou Q, Hu S, Hu F. Next-generation small RNA sequencing for microRNAs profiling in the honey bee Apis mellifera. Insect Molecular Biology, 2010, 19(6): 799-805.

[15]Behura S K, Whitfield C W. Correlated expression patterns of microRNA genes with age-dependent behavioural changes in honeybee. Insect Molecular Biology, 2010, 19(4): 431-439.

[16]刘芳. 意蜂哺育蜂与采集蜂头部mRNAs与miRNAs表达谱Solexa测序比较分析及其调控网络研究[D]. 杭州: 浙江大学, 2012.

Liu F. Integrating of Solexa high-abundance mRNAs and sRNAs in Apis mellifera: comparison between nurses and foragers to identify regulatory network[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)

[17]Shi Y Y, Wu X B, Huang Z Y, Wang Z L, Yan W Y, Zeng Z J. Epigenetic modification of gene expression in honey bees by heterospecific gland secretions. PLoS ONE, 2012, 7(8): e43727.

[18]曾志将. 养蜂学. 北京: 中国农业出版社, 2009.

Zeng Z J. Apiculture. Beijing: China Agricultural Press, 2009. (in Chinese)

[19]吴小波, 王子龙, 张飞, 石元元, 曾志将. 婚飞行为影响中华蜜蜂性成熟处女蜂王的基因表达. 昆虫学报, 2013, 56(5): 486-493.

Wu X B, Wang Z L, Zhang F, Shi Y Y, Zeng Z J. Mating flight behaviour affects gene expression in matured virgin queens of Apis cerana cerana (Hymenoptera:Apidae). Acta Entomologica Sinica, 2013, 56(5): 486-493. (in Chinese)

[20]Margotta J W, Mancinelli G E, Benito A A, Ammons A, Roberts S P, Elekonich M M. Effects of flight on gene expression and aging in the honey bee brain and flight muscle. Insects, 2013, 4(1): 9-30.

[21]黄文强, 邢万金. piRNA的生物学功能. 中国生物化学与分子生物学报, 2009, 25(9): 783-788.

Huang W Q, Xing W J. Biological functions of piRNA. Chinese Journal of Biochemistry and Molecular Biology, 2009, 25(9): 783-788. (in Chinese)

[22]赵爽, 刘默芳. piRNA和PIWI蛋白的功能机制研究进展. 生命科学, 2010, 22(7): 623-627.

Zhao S, Liu M F. piRNA and PIWI in animal germ cells. Chinese Bulletin of Life Sciences, 2010, 22(7): 623-627. (in Chinese)

[23]张燕, 樊伯珍, 童晓文. piRNA在生殖系统中的功能研究进展. 临床医学工程, 2010, 17(1): 143-145.

Zhang Y, Fan B Z, Tong X W. The function of piRNA in the reproductive system. Clinical Medicine and Engineering, 2010, 17(1): 143-145. (in Chinese)

[24]刘志勇, 王子龙, 王欢, 曾志将. 中华蜜蜂csd多态性分析. 中国农业科学, 2011, 44(23): 4911-4917.

Liu Z Y, Wang Z L, Wang H, Zeng Z J. Polymorphism analysis of csd in five populations of Chinese honeybee. Scientia Agricultura Sinica, 2011, 44(23): 4911-4917. (in Chinese)

[25]Herranz R, Mateos J, Marco R. Diversification and independent evolution of tropoini C genes in insects. Journal of Molecular Evolution, 2005, 60(1): 31-44.

[26]Hori S, Kaneko K, Saito T H. Takeuchi H, Kubo T. Expression of two microRNAs, ame-mir-276 and -1000, in the adult honeybee (Apis mellifera) brain. Apidologie, 2011, 42: 89-102.

[27]李红亮. 中华蜜蜂头部ESTs文库构建和主要触角特异蛋白基因克隆、定位及其表达鉴定[D]. 杭州: 浙江大学, 2007.

Li H L. Construction of the head ESTs in Apis cerana cerana, and its main antennal proteins:molecular cloning, immunocytochemical localization and expression[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)

[28]黄海山. 家蚕脂动激素受体信号转导机制研究[D]. 杭州: 浙江大学, 2012.

Huang H S. The Mechanism of signal transduction of the adipokinetic hormone receptor in Bombyx mori[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[1] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[2] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[3] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[4] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[5] FENG RuiRong,FU ZhongMin,DU Yu,ZHANG WenDe,FAN XiaoXue,WANG HaiPeng,WAN JieQi,ZHOU ZiYu,KANG YuXin,CHEN DaFu,GUO Rui,SHI PeiYing. Identification and Analysis of MicroRNAs in the Larval Gut of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(1): 208-218.
[6] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[7] CHEN HuiFang,HUANG QiLiang,HU ZhiChao,PAN XiaoTing,WU ZhiSheng,BAI YinShan. Expression Differences and Functional Analysis of Exosomes microRNA in Porcine Mature and Atretic Follicles [J]. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676.
[8] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[9] TAN ZhaoGuo,LI YanMei,BAI JianFang,GUO HaoYu,LI TingTing,DUAN WenJing,LIU ZiHan,YUAN ShaoHua,ZHANG TianBao,ZHANG FengTing,CHEN ZhaoBo,ZHAO FuYong,ZHAO ChangPing,ZHANG LiPing. Cloning of TaBG and Analysis of Its Function in Anther Dehiscence in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(13): 2710-2723.
[10] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[11] ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
[12] CHEN HuaZhi,ZHU ZhiWei,JIANG HaiBin,WANG Jie,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Comparative Analysis of MicroRNAs and Corresponding Target mRNAs in Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2020, 53(17): 3606-3619.
[13] ZHU JingJing,ZHOU XiaoLong,WANG Han,LI XiangChen,ZHAO AYong,YANG SongBai. Prediction and Verification of MicroRNAs Targeting Porcine Endoplasmic Reticulum Stress Pathway [J]. Scientia Agricultura Sinica, 2020, 53(15): 3169-3179.
[14] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
[15] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!