Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (17): 3635-3642.doi: 10.3864/j.issn.0578-1752.2013.17.012

• HORTICULTURE • Previous Articles     Next Articles

Sequence Analysis and Prokaryotic Expression of Two Ethylene Responsive Factors MdAP2D4 and MdAP2D19

 TIAN  Yi-12, CHEN  Ke-Qin-1, AN  Xiu-Hong-1, HAO  Hong-Mei-2, LIU  Zhi-3, CONG  Pei-Hua-2, HAO  Yu-Jin-1   

  1. 1.College of Horticulture Science and Engineering/State Key Laboratory of Crop Biology, Taian 271018, Shandong
    2.Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Xingcheng 125100, Liaoning
    3.Liaoning Institute of Pomology, Xiongyue 115009, Liaoning
  • Received:2013-03-11 Online:2013-09-01 Published:2013-07-12

Abstract: 【Objective】 Cloning, sequence and expression analysis of two ERF (ethylene responsive factor) transcription factors from Malus domestica Borkh and expression of their fusion proteins in E. coli were determined to identify their disease resistant function and molecular mechanism.【Method】ESTs derived from suppression subtractive hybridization were blasted, and two EFR genes, MdAP2D4 and MdAP2D19, were cloned which contain these ESTs; Subsequently, phylogenetic relationship including the two apple proteins and Arabidopsis AP2 domain-containing proteins was analyzed using MEGA4.1 and the multiple alignment of AP2/ERF domain was constructed; Additionaly, the in vitro shoot cultures of ‘Gala’ apple were used to identify the two genes expression in response to exogenous MeJA; Finally, the two genes were inserted into vector pGEX-4T-1, and IPTG was used to induce the fusion proteins expression in E. coli BL21.【Result】The phylogenetic relationship of MdAP2D4 and MdAP2D19 was closer with Arabidopsis ERF proteins of group B3 than others. The transcript levels of MdAP2D4 and MdAP2D19 were higher in leaves than other organs and could be induced by exogenous MeJA. The results of SDS-PAGE demonstrated that the fusion proteins of the two genes could express in E.coli BL21 induced by IPTG.【Conclusion】 MdAP2D4 and MdAP2D19 are ERF transcription factors belonging to group B3, and they can be induced by exogenous MeJA.

Key words: suppression subtractive hybridization , Methyl jasmonate , ethylene responsive factor , prokaryotic expression , disease resistance

[1]国立耘, 李金云, 李保华, 张新忠, 周增强, 李广旭, 王英姿, 李晓军, 黄丽丽, 孙广宇, 文耀东. 中国苹果质感轮纹病发生和防治情况. 植物保护, 2009, 35(4): 120-123.

Guo L Y, Li J Y, Li B H, Zhang X Z, Zhou Z Q, Li G X, Wang Y Z, Li X J, Huang L L, Sun G Y, Wen Y D. Investigations on the occurrence and chemical control of Botryosphaeria canker of apple in China. Plant Protection, 2009, 35(4): 120-123.(in Chinese)

[2]曹克强, 国立耘, 李保华, 孙广宇, 陈汉杰. 中国苹果树腐烂病发生和防治情况调查. 植物保护, 2009, 35(2): 114-116.

Cao K Q, Guo L Y, Li B H, Sun G Y, Chen H J. Investigations on the occurrence and control of apple canker in China. Plant Protection, 2009, 35(2): 114-116. (in Chinese)

[3]Gutterson N, Reuber T L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 2004, 7:465-471.

[4]McGrath K C, Dombrecht B, Manners J M, Schenk P M, Edgar C I, Maclean D J, Scheible W R, Udvardi M K, Kazan K. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identi?ed via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiology, 2005, 139: 949-959.

[5]张计育, 王庆菊, 郭忠仁. 植物AP2/ERF类转录因子研究进展. 遗传, 2012, 34(7): 835-847.

Zhang J Y, Wang Q J, Guo Z R. Progresses on plant AP2/ERF transcription factors. Hereditas, 2012, 34(7): 835-847. (in Chinese)

[6]李科友, 朱海兰. 植物非生物逆境胁迫DREB/CBF转录因子的研究进展. 林业科学, 2011, 47(1):124-134.

Li K Y, Zhu H L. Research progress of DREB/CBF transcription factor in response to abiotic-stressed in plants. Scientia Silvae Sinicae, 2011, 47(1):124-134. (in Chinese)

[7]Fujimoto S Y, Ohta M, Uusi A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box–mediated gene expression. Plant Cell, 2000, 12:393-404.

[8]Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant Journal, 2002, 29:23-32.

[9]Lorenzo O, Piqueras R, Sanchez-Serrano J J, Solano R. Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 2003, 15:165-178.

[10]Pré M, Atallah M, Champion A, De Vos M, Pieterse C, Memelink J. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiology, 2008, 147: 1347-1357.

[11]Brown R L, Kazan K, Mcgrath K C, Maclean D J, Manners J M. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiology, 2003, 132:1020-1032.

[12]Anderson J P, Lichtenzveig J, Gleason C, Oliver R P, Singh K B. The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with Rhizobia. Plant Physiology, 2010, 154: 861-873.

[13]Moffat C S, Ingle R A, Wathugala D L, Saunders N J, Knight H, Knight M R. ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PLOS ONE, 2012, 7(4): e35995. doi: 10.1371/journal. pone. 0035995.

[14]Xu Z S, Xia L Q, Chen M, Cheng X G, Zhang R Y, Li L C, Zhao Y M, Lu Y, Ni Z Y, Qiu Z G, Ma Y Z. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increase multiple stress tolerance. Plant Molecular Biology, 2007, 65(6): 719-732.

[15]董娜, 张增艳, 辛志勇. 病原菌诱导的小麦转录因子TaERF1b基因的分离和表达. 中国农业科学, 2008, 41(4): 946-953.

Dong N, Zhang Z Y, Xin Z Y. Isolation and expression analysis of a pathogen-induced ERF gene in Triticum aestivum L. Scientia Agricultura Sinica, 2008, 41(4): 946-953. (in Chinese)

[16]Zhang H, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Zhang H, Lu X, Huang D, Huang R. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta, 2004, 220: 262-270.

[17]Zhang G Y, Chen M, Li L C, Xu Z S, Chen X P, Guo J M, Ma Y Z. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experiment Botany, 2009, 60(13): 3781-3796.

[18]张秋平, 杨宇红, 茆振川, 陈国华, 谢丙炎. 辣椒乙烯反应转录因子基因CaJERF1的克隆及诱导表达. 园艺学报, 2012, 39(4):705-712.

Zhang Q P, Yang Y H, Mao Z C, Chen G H, Xie B Y. Cloning and inducible expression of ethylene response factor CaJERF1 in hot pepper. Acta Horticulture Sinica, 2012, 39(4):705-712. (in Chinese)

[19]Lai Y, Dang F, Lin J, Yu L, Shi Y, Xiao Y, Huang M, Lin J, Chen C, Qi A, Liu Z, Guan D, Mou S, Qiu A, He S. Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Physiology and Biochemistry, 2013, 62: 70-78.

[20]Onate-Sanchez L, Anderson J P, Young J, Singh K B. AtERF14, a member of the ERF family of transcription factors, play a non-redundant role in plant defense. Plant Physiology, 2007, 143: 400-409.

[21]Son G H, Wan J, Kim H J, Nguyen X C, Chung W S, Hong J C, Stacey G. Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Molecular Plant-Microbe Interactions, 2012, 25(1): 48-60.

[22]Wang A, Tan D, Takahashi A, Li T Z, Takeo H. MdERFs, two ethylene-response factors involved in apple fruit ripening. Journal of Experiment Botany, 2007, 58(13): 3743-3748.

[23]Tacken E, Ireland H, Gunaseelan K, Karunairetnam S, Wang D, Schultz K, Bowen J, Atkinson R G, Johnston J W, Putterill J. The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. Plant Physiology,2010, 153: 294-305.

[24]Zhuang J, Yao Q H, Xiong A S, Zhang J. Isolation, phylogeny and expression patterns of AP2-like genes in apple (Malus × domestica Borkh). Plant Moleculat Biology Reporter, 2011, 29: 209-216.

[25]刘志. 苹果抗轮纹病种质资源和基因筛选以及NO介导的防御反应[D]. 山东泰安, 山东农业大学, 2009.

Liu Z. Studies on screening for apple germplasm and genes resistant to ring rot disease, and NO-mediated defensive[D]. Tai’an, Shandong: Shandong Agricultural University, 2009. (in Chinese)

[26]Degenhardt J, Al-Masri N A, Kürkeüoglu Szankowski I, Gau A E. Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Molecular Genetics and Genomics, 2005, 273(4): 326-335.

[27]Norelli J L, Farrell R E Jr, Bassett C L, Baldo A M, Lalli D A, Aldwinckle H S, Wisniewski M E. Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genetics & Genomics, 2009, 5:27-40.

[28]Sharma K, Mishra A K, Misra R S. Identification and characterization of differentially expressed genes in the resistance reaction in taro infected with Phytophthora colocasiae. Molecular Biology Reports, 2009, 36(6): 1291-1297.

[29]Zuo K J, Qin J, Zhao J Y, Ling H, Zhang L D, Cao Y F, Tang K X. Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene, 2007, 391(1/2): 80-90.

[30]Dong N, Liu X, Lu Y, Du L, Xu H, Liu H, Xin Z, Zhang Z. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Functional & Integrative Genomics, 2010, 10(2): 215-226.

[31]Fischer U, Droge-Laser W. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Molecular Plant-Microbe Interactions, 2004, 17(10): 1162-1171.

[32]Gu Y Q, Yang C, Thara V K, Zhou J, Martin G B. Pti4 is induced by ethylene and salicylic acid and its product is phosphorylated by the Pto kinase. Plant Cell, 2000, 12: 771-785.

[33]Cheong Y H, Moon B C, Kim J K, Kim C Y, Kim M C, Kim I H, Park C Y, Kim J C, Park B O, Koo S C, Yoon H W, Chung W S, Lim C O, Lee S Y, Cho M J. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiology, 2003, 132: 1961-1972.

[34]De Boer KD, Tilleman S, Pauwels L, Vanden Bossche R, De Sutter V, Vanderhaeghen R, Hilson P, Hamill J D, Goossens A. APETAL A2/ETHYLENE RESPONSE FACTOR and basic  helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant Journal, 2011, 66: 1053-1065.

[35]Wang P, Du Y, Zhao X, Miao Y, Song C P. The MPK6-ERF6- ROSE7/GCC-box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis thaliana. Plant Physiology, 2013, DOI:10.1104/pp.112.210724.
[1] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[2] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[3] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[4] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[5] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[6] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[7] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[8] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[9] XiaoHe LIU,GuiSheng QIU,ZhaoGuo TONG,HuaiJiang ZHANG,WenTao YAN,Qiang YUE,LiNa SUN. Ligands Binding Characteristics of Chemosensory Protein CsasCSP16 of Carposina sasakii [J]. Scientia Agricultura Sinica, 2021, 54(5): 945-958.
[10] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[11] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[12] QIN JianHui,LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao. Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta [J]. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028.
[13] ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases [J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522.
[14] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[15] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!