Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (17): 3545-3561.doi: 10.3864/j.issn.0578-1752.2013.17.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Bowl Types and Densities on Grain Yield, Characteristics of Photosynthesis and Dry Mass Production of Bowl Transplanted Japonica Super Rice

 ZHOU  Xing-Tao-12, ZHANG  Hong-Cheng-1, XU  Ke-1, GUO  Bao-Wei-1, CHEN  Hou-Cun-3, CAO  Li-Qiang-1, DAI  Qi-Gen-1, HUO  Zhong-Yang-1, WEI  Hai-Yan-1, LI  Ming-Yin-1, LI  Gui-Yun-3, WU  Zhong-Hua-3   

  1. 1.Collge of Agriculture, Yangzhou University/ Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Province Key Laboratory of Crop Genetics and Physiology, Yangzhou 225009, Jiangsu
    2.Yangzhou Agricultural Technology Extension Center, Yangzhou 225000, Jiangsu
    3.Crop Cultural Station in Haian County, Haian 226600, Jiangsu
  • Received:2013-01-09 Online:2013-09-01 Published:2013-04-08

Abstract: 【Objective】This experiment seeks to maximize the potential of rice bowl seedling planting specifications and reasonable density profile, explore new ways of labor saving and accomplish super high yielding cultivation of rice.【Method】The experiment was conducted by raising seedling of combinings with 3-bowl, 2-bowl and a single bowl seedling discs and using Wuyunjing 24 and Nanjing 44 as materials. Five different rice transplanting densities were designed, and the new bowl seedling planting production potential and the reasonable density were studied. 【Result】The treatments of 3-bowl together with 15×104 hm-2 holes, 2-bowl together with 18×104 hm-2 holes and a single bowl with 24×104 hm-2 holes accomplished the highest yield level, while the 2-bowl together with 18×104 hm-2 holes yielded most among the three treatments. For the different types of bowl seedlings, dry matter accumulation, its proportion of distribution, crop growth rate from heading to maturity stage and grain yield, a pattern at the initial showed a trend of single bowl>2-bowl>3-bowl under the lower basic seedling condition of 36×104 hm-2, 2-bowl>3-bowl and single bowl under the medium basic seedling condition of 72×104 hm-2, 2-bowl and 3-bowl>single bowl under the larger basic seedling condition of 90×104 hm-2 to 108×104 hm-2. In the three maximum yield conditions, dry matter accumulation, its proportion of distribution and crop growth rate from heading to maturity stage showed a trend of 2-bowl>3-bowl>single bowl. In the same basic seedling conditions, the effective tiller percentage showed a trend of 3-bowl>2-bowl>single bowl while the decreasing rate of leaf area showed a trend of single bowl>2-bowl>3-bowl. Under the three maximum yield conditions, the effective tiller percentage showed a trend of 2-bowl>3-bowl>single bowl while the decreasing rate of leaf area showed a trend of single bowl>3-bowl>2-bowl. Under the same basic seedling conditions, with the exception of the basic seedling in a minimum of 36×104 hm-2, dry matter per stem and sheath at heading, waxy, maturing stages and its maximum export and transformation showed a trend of 2-bowl and 3-bowl>single bowl.【Conclusion】Under the conditions of 2-bowl and 3-bowl seedling discs, the holes for transplanting rice reduced by nearly 1/3 to 1/2, the effective tiller percentage becomes higher while the decreasing rate of leaf area becomes lower than the single bowl transplanting disc, the photosynthesis and dry mass production’s advantage becomes more obvious after heading stage in the appropriate or larger basic seedling conditions. 2-bowl and 3-bowl seedling transplanting discs have a higher yield potential, especially for the 2-bowl transplanting disc.

Key words: super rice , bowl seedling , density

[1]凌启鸿. 水稻精确定量栽培理论与技术. 北京: 中国农业出版社, 2007.

Ling Q H. Theory and Technology of Rice Precision and Quantitative Cultivar. Beijing: China Agricultural Press, 2007. (in Chinese)

[2]陈健. 水稻栽培方式的演变与发展研究. 沈阳农业大学学报, 2003, 34(5) : 389-393.

Chen J. Evolution and development of rice planting pattern. Journal of Shenyang Agricultural University, 2003, 34(5): 389-393. (in Chinese)

[3]杜鹃, 刘国华. 水稻栽培方式研究进展. 作物研究, 2007, 21(5): 593-597.

Du J, Liu G H. Research progress of rice cultivation. Crop Research, 2007, 21(5): 593-597. (in Chinese)

[4]李建桥, 张国凤, 陈建能, 赵匀. 钵苗有序移栽机制的研究进展及应用展望. 农机化研究, 2008(8): 1-5.

Li J Q, Zhang G F, Chen J N, Zhao Y. Developments and prospects of application of the ordered throwing mechanism for plotted rice-seedling. Journal of Agricultural Mechanization Research, 2008(8): 1-5. (in Chinese)

[5]于磊, 牟雪雷, 韩休海, 沈亮. 水稻钵育摆栽技术的应用及发展. 农机化研究, 2011(9): 212-215.

Yu L, Mou X L, Han X H, Shen L. The application and development of rice bowl-seedling transplanting technology. Journal of Agricultural Mechanization Research, 2011(9): 212-215. (in Chinese)

[6]张洪程, 戴其根, 霍中洋, 许轲, 魏海燕. 中国抛秧稻作技术体系及其特征. 中国农业科学, 2008, 4(1): 43-52.

Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y. Cultivation technical system of rice seedling broadcasting and its characteristics. Scientia Agricultural Sinica, 2008, 4(1): 43-52. (in Chinese)

[7]胡雅杰, 张洪程, 龚金龙, 龙厚元, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 沙安勤, 周有炎, 罗学超, 刘国林. 抛秧栽培技术模式及其高产形成规律与途径研究进展. 中国农业科技导报, 2012, 14(2): 109-117.

Hu Y J, Zhang H C, Gong J L, Long H Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Li D J, Sha A Q, Zhou Y Y, Luo X C, Liu G L. Research progress on cultivation pattern, forming regulation and approach of high-yielding broadcasted rice. Journal of Agricultural Science and Technology, 2012, 14(2): 109-117. (in Chinese)

[8]封益林, 刘菊华, 杨卫建, 徐国臣. 粳稻塑盘旱育抛秧特点及高产高效栽培技术. 上海农业科技, 2007(1): 49-50.

Feng Y L, Liu J H, Yang W J, Xu G C. Characteristics of dry-raising seedlings in plastic tray and cast-transplanting rice and cultivation techniques. Shanghai Agricultural Science and Technology, 2007(1): 49-50. (in Chinese)

[9]郭保卫, 张春华, 魏海燕, 张洪程, 陈厚存, 戴其根, 霍中洋, 许轲, 邢琳, 管文文, 黄幸福, 杨雄. 抛秧物理立苗对水稻生长的影响及其调控因素的研究. 中国农业科学, 2010, 43(19): 3945-3953.

Guo B W, Zhang C H, Wei H Y, Zhang H C, Chen H C, Dai Q G, Huo Z Y, Xu K, Xing L, Guan W W, Huang X F, Yang X. Effects of different postures on growth of broadcasted rice and the regulating factors of physical standing of broadcasted seedlings. Scientia Agricultura Sinica, 2010, 43(19): 3945-3953. (in Chinese)

[10]夏秀红, 徐正进, 曹静. 不同栽培方式水稻群体的生育规律和生态特性的研究. 北方水稻, 2011, 41(1): 9-14.

Xia X H, Xu Z J, Cao J. Studies on growth regulation and ecological characteristics of different planting patterns in rice. North Rice, 2011, 41(1): 9-14. (in Chinese)

[11]白锡斌, 宋国苏, 李忠熙, 赵晓燕, 吴春红, 刘国山, 赵玉恕, 吴常恕. 水稻钵苗浅插的增产作用浅析. 垦殖与稻作, 1998(1): 16-18.

Bai X B, Song G S, Li Z X, Zhao X Y, Wu C H, Liu G S, Zhao Y S, Wu C S. The study of increased yield in pot seedling planting rice. Reclaim and Rice Culitivate, 1998(1): 16-18. (in Chinese)

[12]杨波, 任万军, 杨文钰. 密度对优化定抛水稻产量和群体质量的影响. 杂交水稻, 2006, 21(5): 64-68.

Yang B, Ren W J, Yang W Y. Effects of density on grain yield and population growth quality of rice in the optimized seedling- broadcasting technique. Hybrid Rice, 2006, 21(5): 64-68. (in Chinese)

[13]林月荣, 韦永月, 张文飞. 不同抛秧密度对水稻群体质量的影响及相应调控技术. 广西农学报, 2004(2): 5-6.

Lin Y R, Wei Y Y, Zhang W F, The impact of different seedling-throwing density on rice colony quality and the relevant control technology. Journal of Guangxi Agriculture, 2004(2): 5-6. (in Chinese)

[14]钱银飞, 张洪程, 吴文革, 陈烨, 李杰, 郭振华, 张强, 戴其根, 霍中洋, 许轲, 魏海燕. 机插穴苗数对不同穗型粳稻品种产量及品质的影响. 作物学报, 2009, 35(9): 1698-1707.

Qian Y F, Zhang H C, Wu W G, Chen Y, Li J, Guo Z H, Zhang Q, Dai Q G, Huo Z Y, Xu K, Wei H Y. Effects of seedlings number per hill on grain yield and quality in different panicle types of mechanical transplanted Japonica rice. Acta Agronomica Sinica, 2009, 35(9): 1698-1707. (in Chinese)

[15]徐春梅, 王丹英, 邵国胜, 章秀福. 施氮量和栽插密度对超高产水稻中早22产量和品质的影响. 中国水稻科学, 2008, 22(5): 507-512.

Xu C M, Wang D Y, Shao G S, Zhang X F. Effects of transplanting density and nitrogen fertilizer rate on yield formation and grain quality of super high yielding rice Zhongzao 22. Chinese Journal of Rice Science, 2008, 22(5): 507-512. (in Chinese)

[16]Sheehy J E, Dionora M J A, Mitchell P L. Spikelet numbers, sink size and potential yield in rice. Field Crops Research, 2001, 7: 77-85.

[17]吴春赞, 叶定池, 林华, 倪日群, 赖联赛, 林辉. 栽插密度对水稻产量及品质的影响. 中国农学通报, 2005, 21(9): 190-191.

Wu C Z, Ye D C, Lin H, Ni R Q, Lai L S, Lin H. Effects of transplanting density on rice yield and its quality. Chinese Agricultural Science Bulletin, 2005, 21(9): 190-191. (in Chinese)

[18]王夫玉, 张洪程, 赵新华, 段祥茂, 高德友. 行株距配比对水稻群体特征的影响. 甘肃科学学报, 2001, 13(2): 38-42.

Wang F Y, Zhang H C, Zhao X H, Duan X M, Gao D Y. Effect of ratio of row spacing to intrarow spacing on population character in rice. Journal of Gansu Sciences, 2001, 13(2): 38-42. (in Chinese)

[19]袁隆平. 水稻强化栽培体系. 杂交水稻, 2001, 16(4): 1-3.

Yuan L P. The system of rice intensification (SRI). Hybrid Rice, 2001, 16(4): 1-3. (in Chinese)

[20]何荫飞, 简峰. 不同品种和密度对超级杂交稻强化栽培的影响. 河北农业科学, 2008, 12(2): 19-20.

HE Y F, Jian F. Effect of different varieties and densities on the system of super hybrid rice intensification. Journal of Hebei Agricultural Sciences, 2008, 12(2): 19-20. (in Chinese)

[21]吴文平, 李士敏, 刘元士. 三围立体强化栽培密度对杂交水稻Q优6号产量的影响. 贵州农业科学, 2010, 38(9): 45-47.

Wu W P, Li S M, Liu Y S. Effect of three-dimensional intensive cultivation density on yield of q you 6(a super hybrid rice variety. Guizhou Agricultural Sciences, 2010, 38(9): 45-47. (in Chinese)

[22]蔡艳, 陶武辉, 张毅, 张锡洲. 不同移栽密度对“大三围强化栽培”模式下水稻产量及氮素利用的影响. 中国生态农业学报, 2008, 16(6): 1603-1605.

Cai Y, Tao W H, Zhang Y, Zhang X Z. Effect of planting density on the production and N utilization of rice under large-triangle intensification system. Chinese Journal of Eco-Agriculture, 2008, 16(6): 1603-1605. (in Chinese)

[23]Sheehy J E, Peng S, Dobermann A, Mitchell P L, Ferrera A, Yang J C, Zou Y B, Zhong X H, Huang J L. Fantastic yields in the system of rice intensification: fact or fallacy. Field Crops Research, 2004, 88:1-8.

[24]付民杰, 吴明根, 全炳武, 高峰, 刘文利. 水稻超稀植栽培丛插基数与插秧密度的研究. 吉林农业大学学报, 2000, 22(2): 22-25.

Fu M J, Wu M G, Quan B W, Gao F, Liu W L. Study on the density of transplants and the paddy basic seedling per hole in supper wide spacing planting. Journal of Jilin Agricultural University, 2000, 22(2): 22-25. (in Chinese)

[25]金学泳. 寒地水稻三超技术. 中国稻米, 2000(6): 21-22.

Jin X Y. 3-S cultivating technique of rice in cold zone. China Rice, 2000(6): 21-22. (in Chinese)

[26]金学泳, 金正勋, 孙滔, 商文楠, 李殿平, 徐凤花. 寒地水稻三超栽培技术研究. 中国农学通报, 2005, 21(4): 136-141.

Jin X Y, Jin Z X, Sun T, Shang W N, Li D P, Xu F H. Summarize    in the study of 3-S cultivating technique of rice in cold zone.  Chinese Agricultural Science Bulletin, 2005, 21(4): 136-141. (in Chinese)

[27]孙永健, 陈宇, 孙园园, 徐徽, 许远明, 刘树金, 马均. 不同施氮量和栽插密度下三角形强化栽培杂交稻抗倒伏性与群体质量的关系. 中国水稻科学, 2012, 26(2): 189-196.

Sun Y J, Chen Y, Sun Y Y, Xu H, Xu Y M, Liu S J, Ma J. Relationship between culm lodging resistance and population quality of hybrids under triangle-planted system of rice intensification at different nitrogen application rates and planting densities. Chinese Journal of Rice Science, 2012, 26(2): 189-196. (in Chinese)

[28]刁守雨. 里下河地区杂交中粳盘育摆栽高产特点与密度研究[D]. 扬州: 扬州大学, 2007.

Diao S Y. Characteristic of high yield and density in hybrid medium japanica rice planting with raised seedling in plastic trays in Lixiahe area[D]. Yangzhou: Yangzhou University, 2007. (in Chinese)

[29]吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗华, 孙菊英, 赵品恒. 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010, 43(2): 266-276.

Wu G C, Zhang H C, Qian Y F, Li D J, Zhou Y Y, Xu J, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Xu Z J, Qian Z H,Sun J Y, Zhao P H. Rule of grain yield components from high yield to super high yield and the characters of super-high yielding Japonica super rice. Scientia Agricultura Sinica, 2010, 43(2): 266-276. (in Chinese)

[30]张洪程, 吴桂成, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 黄幸福, 龚金龙. 水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式. 中国农业科学, 2010, 43(13): 2645-2660.

Zhang H C, Wu G C, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Huang X F, Gong J L. The SOI model of quantitative cultivation of super-high yielding rice. Scientia Agricultura Sinica, 2010, 43(13): 2645-2660. (in Chinese)

[31]凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000: 44-107.

Ling Q H. The Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000: 44-107. (in Chinese)

[32]林文雄, 王松良, 梁义元, 郭玉春, 何水林. 水稻旱育稀植高产栽培的生理生态研究Ⅱ.早稻高产形成与生理生化特性. 应用生态学报, 1998, 9(4): 395-399.

Lin W X, Wang S L, Liang Y Y, Guo Y C, He S L. Physio-ecological study on high yielding cultivation of rice by dry raising seedling and thin spacing transplanting techniquesⅡ.High yielding formation and its physiobiochemical properties of early rice. Chinese Journal of Applied Ecology, 1998, 9(4): 395-399. (in Chinese)
[1] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[2] ZHANG TianPeng,YAN TieZhu,JIN PingZhong,LEI QiuLiang,LIAN HuiShu,LI Ying,LI XiaoHong,OU HuiPing,ZHOU JiaoGen,DU XinZhong,WU ShuXia,LIU HongBin. Net Anthropogenic Nitrogen Inputs and Its Influencing Factors in Three Typical Watersheds of China [J]. Scientia Agricultura Sinica, 2022, 55(23): 4678-4687.
[3] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[4] LI Pei,HE RuiYin,WANG XiaoChan,DING QiShuo. Uniform Distance Single Seed Linear Seeding Method for Control of Wheat Physiology and Ecology [J]. Scientia Agricultura Sinica, 2022, 55(2): 295-306.
[5] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[6] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[7] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[8] HU DanDan,LI RongFa,LIU Peng,DONG ShuTing,ZHAO Bin,ZHANG JiWang,REN BaiZhao. Mixed-Cropping Improved on Grain Filling Characteristics and Yield of Maize Under High Planting Densities [J]. Scientia Agricultura Sinica, 2021, 54(9): 1856-1868.
[9] YUAN Yuan,WANG Bo,ZHOU GuangSheng,LIU Fang,HUANG JunSheng,KUAI Jie. Effects of Different Sowing Dates and Planting Densities on the Yield and Stem Lodging Resistance of Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626.
[10] LI Jing,WU HuiJun,WU XuePing,WANG BiSheng,YAO YuQing,LÜ JunJie. Long-Term Conservation Tillage Enhanced Organic Carbon and Nitrogen Contents of Particulate Organic Matter in Soil Aggregates [J]. Scientia Agricultura Sinica, 2021, 54(2): 334-344.
[11] WANG JinFeng,WANG ZhuangZhuang,GU FengXu,MOU HaiMeng,WANG Yu,DUAN JianZhao,FENG Wei,WANG YongHua,GUO TianCai. Effects of Nitrogen Fertilizer and Plant Density on Carbon Metabolism, Nitrogen Metabolism and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2021, 54(19): 4070-4083.
[12] ZHANG ZhanJun,YANG HongWei,FAN ZhiLong,YU AiZhong,HU FaLong,YIN Wen,FAN Hong,GUO Yao,CHAI Qiang,ZHAO Cai. Water-Carrying Potential of No-Tillage with Plastic Film Mulching for 2-Year Coupled with Maize High-Density Planting in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2021, 54(16): 3406-3416.
[13] HOU JiaMin,LUO Ning,WANG Su,MENG QingFeng,WANG Pu. Effects of Increasing Planting Density on Grain Yield, Leaf Area Index and Photosynthetic Rate of Maize in China [J]. Scientia Agricultura Sinica, 2021, 54(12): 2538-2546.
[14] KUAI Jie,LI Zhen,WANG Bo,LIU Fang,YE Jun,ZHOU GuangSheng. Effects of Density and Row Spacing on Seedling Traits of Rapeseed and Seed Yield [J]. Scientia Agricultura Sinica, 2021, 54(11): 2319-2332.
[15] ZHOU YiFan,YANG LinSheng,MENG Bo,ZHAN Jian,DENG Yan. Analysis of Yield Gaps and Limiting Factors in China’s Main Sugarcane Production Areas [J]. Scientia Agricultura Sinica, 2021, 54(11): 2377-2388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!