Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (17): 3534-3544.doi: 10.3864/j.issn.0578-1752.2013.17.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of Genetic Linkage Map Using SSR Molecular Markers in Azuki Bean (Vigna angularis Ohwi and Ohashi)

 LUO  Wan-Xia, ZHANG  Li, YANG  Kai, LI  Yi-Song, ZHAO  Bo, LI  Ming, WAN  Ping   

  1. College of Plant Science and Technology, Beijing University of Agriculture/Beijing Key Laboratory of New Technology in Agricultural Application, Beijing 102206
  • Received:2013-03-06 Online:2013-09-01 Published:2013-06-04

Abstract: 【Objective】 The published SSR primers of cowpea,common bean and EST-SSR (expressed sequence tags) primers of common bean were located and integrated in azuki bean linkage group to construct a linkage map of Chinese azuki bean with azuki bean SSR primers as anchor markers. More practical molecular markers will be supplied to gene mapping, cloning and molecular marker-assisted selection of azuki bean. 【Method】 A total of 1 473 SSR and EST-SSR primer pairs, including 906 SSR primer pairs of cowpea, 123 SSR and 248 EST-SSR of common bean, 196 SSR primer pairs of azuki bean, were used for PCR amplification to screen polymorphic markers between cultivated azuki bean parents of HB801×AG109 and GM892×AG110. Their F2 segregating populations were tested with the polymorphic markers. 【Result】 An integrated genetic linkage map of azuki bean containing 145 SSR and EST-SSR markers was constructed. This molecular genetic linkage map is composed of 59 azuki bean SSR anchoring markers, newly mapped 63 cowpea SSR markers, 9 common bean SSR markers and 14 common bean EST-SSR markers, as well as a stem colour marker-the purple stem trait which is located on linkage group 9. Genetic distance of purple stem trait from CEDG022 and cbess058 molecular markers is 0.9 cM and 0.1 cM, respectively. The total length of the linkage map was 823 cM and covered 11 linkage groups. The average distance between markers was 5.64 cM. The average distance of each linkage group spanned 74.82 cM. The average number of markers was 13.27 for each of 11 chromosomes. The length of each linkage group ranged from 7 to 26 markers was from 49.1 cM to 125.6 cM. 【Conclusion】Molecular markers of the relative species were freshly introduced in azuki bean and increased density of its genetic linkage map. It is useful for gene mapping and cloning, molecular marker-assisted selection in azuki bean.

Key words: azuki bean (Vigna angularis Ohwi &, Ohashi) , SSR , EST-SSR , genetic linkage map

[1]Kaga A, Ohnishi M, Ishii T, Kamijima O. A genetic linkage map of azuki bean constructed with molecularand morphological markers using an interspecific population (Vigna angularis×V.nakashimaet). Theoretical and Applied Genetics, 1996, 93: 658-663.

[2]Kaga A, Ishii T, Tsukimoto K, Tokoro E, Kamijima O. Comparative molecular mapping in Ceratotropis species using an inter specific cross between azuki bean (Vigna angularis) and rice bean (V. umbellate) . Theoretical and Applied Genetics, 2000, 100: 207-213.

[3]Wang X W, Kaga A, Toomoka N, Vaughan D A. The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean [Vigna angularis(Willd.) Ohwi & Ohashi]. Theoretical and Applied Genetics, 2004, 109: 352-360.

[4]Han A O, Kaga A,Isemura T, Wang X W. A genetic linkage map for azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi].  Theoretical and Applied Genetics, 2005, 111: 1278-1287.

[5]Klos K L E, Paz M M, Marek L F, Cregan P B, Shoemaker R C. Molecular markers useful for detecting resistance to brown stem rot in soybean. Crop Science, 2000, 40: 1445-1452.

[6]赵丹, 程须珍, 王丽侠, 王素华, 马燕玲. 绿豆遗传连锁图谱的整合. 作物学报, 2010, 36(6): 932-939.

Zhao D, Cheng X Z, Wang L X, Wang S H, Ma Y L. Integration of mungbean (Vigna radiata) genetic linkage map. Acta Agronomica Sinica, 2010, 36(6): 932-939. (in Chinese)

[7]Isemura T, kito Kaga A, Tabata S, Somta P, Srinives P, Shimizu T, Jo U, Vaughan D A, Tomooka N. Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS ONE, 2012, 7(8): e41304.

[8]Mucheroa W, Diop N N, Bhat P R, Fenton R D, Wanamaker S, Pottorff M, Hearne S, Cisse N, Fatokun C, Ehlers J D, Roberts P A, Close T J. A consensus genetic map of cowpea [Vigna unguiculata (L.) Walp.] and synteny based on EST-derived SNPs. Proceedings of the National Academy of Sciences of the USA, 2009, 106(43): 18159-18164.

[9]Asare A T, Gowda B S, Galyuon I, Aboagye L, Takrama J, Timko M. Assessment of the genetic diversity in cowpea (Vigna unguiculata(L.) Walp.) germplasm from Ghana using simple sequence repeat markers. Plant Genetic Resources, 2010, 8(2): 142-150.

[10]Ogunkanmi L A, Ogundipe O T, Ng N Q, Fatokun C A. Genetic diversity in wild relatives of cowpea (Vigna unguiculata) as revealed by simple sequence repeats (SSR) markers. Journal of Food: Agriculture and Environment, 2008, 6(3/4): 263-268.

[11]Hanai L R, Luciane L, Camargo L, Fungaro M, Tsai S, Vieira M. Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Molecular Breeding, 2010, 25(1): 25-45.

[12]Zhang X Y, Matthew W B, Wang S M. Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat markers. Theoretical and Applied Genetics, 2008,117: 629-640.

[13]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics, 2004, 109: 122-128.

[14]宛煜嵩, 王珍, 肖英华, 吕蓓, 方宣钧. 一张含有227个SSR标记的大豆遗传连锁图. 分子植物育种, 2005, 3(1):15-20.

Wan Y S, Wang Z, Xiao Y H, Lü P, Fang X J. A soybean genetic linkage map comprising of 227 SSR loci in a soybean RIL population. Molecular Plant Breeding, 2005, 3(1): 15-20. (in Chinese)

[15]Benchimol L, Campos T, Carbonell S, Colombo C, Chioratto A, Formighieri E, Gouvêa L, Souza A. Structure of genetic diversity among common bean (Phaseolus vulgaris L.) varieties of Mesoamerican a Andean origins using new developed microsatellite markers. Genetic Resources and Crop Evolution, 2007, 5: 1747-1762.

[16]Yu K, Park S J, Poysa V, Gepts P. Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). Journal of Heredity, 2000, 91(6): 429-434.

[17]Blair M, Torres M M, Giraldo M, Pedraza F. Development and diversity of Andean-derived, gene-based microsatellites for common bean (Phaseolus vulgaris L.). BMC Plant Biology, 2009, 9: 100,doi: 10.1186/1471-2229-9-100.

[18]Hanai L R, Campos T, Camargo L, Benchimol L, Souza A, Melotto M, Carbonell S, Chioratto A, Consoli L, Formighieri E, Siqueira M, Tsai S, Vieira M. Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources. Genome, 2007, 50: 266-277.

[19]Hanai L R, Santini L, Camargo L, Fungaro M, Gepts P, Tsai S, Vieira M. Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Molecular Breeding, 2010, 25:25-45.

[20]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A, Newburg L. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181.

[21]Lincoln S, Daly M, Lander E S. Mapping genetic mapping with MAPMAKER/EXP 3.0: A Tutorial and Reference Manual. Cambridge: Whitehead Institute Technical Report, 1992.

[22]刘长友, 程须珍, 王素华, 王丽侠, 孙蕾, 梅丽, 徐宁. 用于绿豆种质资源遗传多样性分析的SSR及STS引物的筛选. 植物遗传资源学报, 2007, 8(3): 298-302.

Liu C Y, Cheng X Z, Wang S H, Wang L X, Sun L, Mei L, Xu N. The screening of SSR and STS markers for genetic diversity analysis of mungbean. Journal of Plant Genetic Resources, 2007, 8(3): 298-302. (in Chinese)

[23]Sharma R K, Gupta P, Sharma V, Sood A, Mohapatra T, Ahuja P S. Evaluation of rice and sugarcane SSR markers for phylogenetic and genetic diversity analyses in bamboo. Genome, 2008, 51: 91-103.

[24]Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Science, 2001, 160: 1115-1123.

[25]洪彦彬, 梁炫强, 陈小平, 刘海燕, 周桂元, 李少雄, 温世杰. 花生栽培种SSR遗传图谱的构建. 作物学报, 2009, 35(3): 395-402.

Hong Y B, Liang X Q, Chen X P, Liu H Y, Zhou G Y, Li S X, Wen S J. Construction of genetic linkage map in peanut (Arachis hypogaea L.) cultivars. Acta Agronomica Sinica, 2009, 35(3): 395-402. (in Chinese)

[26]Bozhko M, Riegel R, Schubert R, Muller-Starck G A. cyclophilin gene marker confirming geographical differentiation of Norway spruce populations and indicating viability response on excess soil-born salinity. Molecular Ecology, 2003, 12: 3147-3155.

[27]Schubert R, Starck G M, Riegel R. Development of EST-PCR markers and monitoring their intrapopulational genetic variation in Picea abies (L.) Karst. Theoretical and Applied Genetics, 2001, 103: 1223-1231.

[28]Ramsay L, Macaulay M, Ivanissevich S degli, MacLean K, Cardle L, Fuller J, Edwards K J, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R. A simple sequence repeat-based linkage map of barley. Genetics, 2000, 156(4): 1997-2005.

[29]Konduri V, Godwin I D, Liu C J. Genetic mapping of the Lablab purpureus genome suggests the presence of a ‘cuckoo’ gene(s)in this species. Theoretical and Applied Genetics, 2000, 100: 866-871.

[30]Liu C J. Genetic diversity and relationships among Lablab purpureus genotypes evaluated using RAPDs as markers. Euphytica, 1996, 90: 115-119.

[31]Nikaido A, Yoshimaru H, Tsumura Y, Suyama Y, Murai M. Segregation distortion for AFLP markers in Cryptomeria japonica. Genes and Genetic Systems, 1999, 74: 55-59.

[32]Bradshaw H D, Stettler R F. Molecular genetics of growth and development in Populus: II. Segregation distortion due to genetics load. Theoretical and Applied Genetics, 1994, 89: 551-558.

[33]Echt C S, Nelson C D. Linkage mapping and genome length in eastern white pine (Pinus strobes L.). Theoretical and Applied Genetics, 1997, 94: 1031-1037.

[34]Vogl C, Xu S Z. Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics, 2000, 155: 1439-1447.

[35]Reinisch A J, Dong J M, Brubaker C L, Stelly D M, Wendel J F, Paterson A H. A detailed RFLP map of cotton: Chromosome organizationand evolution in a disomic polyploid genome. Genetics, 1994, 138: 829-847.

[36]Byrne M, Murrell J C, Allen B, Moran G F. An integrated genetic linkage map for eucalypts using RFLP, RAPD and isozyme markers. Theoretical and Applied Genetics, 1995, 91: 869-875.

[37]Harushima Y, Kurata N, Yano M, Nagamura Y, Sasaki T, Minobe Y, Nakagahra M. Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Theoretical and Applied Genetic, 1996, 92: 145-150.

[38]Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theoretical and Applied Genetics, 2002, 105: 622-628.

[39]Matsushita S, Iseki T, Fukuta Y, Araki E, Kobayashi S, Osaki M, Yamagishi M. Characterization of segregation distortion on chromosome 3 induced in wide hybridization between and type rice varieties. Euphytica, 2003, 134: 27-32.

[40]Sibove S T, de Souza Jr C L, Garcia A A F, Garcia A F, Silva A R, Mangolin C A, Benchimol L L, Souza A P. Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers: 1. Map construction and localization of locishowing distorted segregation. Hereditas, 2003, 139: 96-106.

[41]宋宪亮, 孙学振, 张天真. 偏分离及对植物遗传作图的影响. 农业生物技术学报, 2006, 14(2): 286-292.

Song X L, Sun X Z, Zhang T Z. Segregation distortion and its effect on genetic mapping in plants. Journal of Agricultural Biotechnology, 2006, 14(2): 286-292. (in Chinese)

[42]李卫华, 刘伟, 尤明山, 许杰, 刘春雷, 李保云, 刘广田. 利用多种SSR引物构建小麦遗传连锁图谱及其多态性分析. 麦类作物学报, 2007, 27(1): 1-6.

Li W H, Liu W, You M S, Xu J, Liu C L, Li B Y, Liu G T. Construction of wheat molecular linkage map using different SSR markers and the polymorphism of the markers. Journal of Tnticeae Crops, 2007, 27(1): 1-6. (in Chinese)

[43]王竹林, 刘曙东, 刘惠远, 何中虎, 夏先春, 陈新民. ‘百农64’× ‘京双16’小麦遗传连锁图谱构建. 西北植物学报, 2006, 26(5): 886-892.

Wang Z L, Liu S D, Liu H Y, He Z H, Xia X C, Chen X M. Genetic linkage map in ‘Bainong 64’בJingshuang 16’ of wheat. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(5): 886-892. (in Chinese)

[44]Kaga A, Isemura T, Tomooka N, Vaughan D A. The genetics of domestication of the Azuki Bean (Vigna angularis). Genetics, 2008, 178: 1013-1036.
[1] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[2] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[3] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[4] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[7] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[8] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
[9] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[10] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[11] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[12] CHEN XiaoHong,HE JieLi,SHI TianTian,SHAO HuanHuan,WANG HaiGang,CHEN Ling,GAO ZhiJun,WANG RuiYun,QIAO ZhiJun. Developing SSR Markers of Proso Millet Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(10): 1940-1949.
[13] KOU ShuJun, HUO AHong, FU GuoQing, JI JunJian, WANG Yao, ZUO ZhenXing, LIU MinXuan, LU Ping. Genetic Diversity and Population Structure of Broomcorn Millet in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2019, 52(9): 1475-1477.
[14] LIU XiangYu, ZHANG YuShu, LIU Liu, LIU Shi, GAO Peng, WANG Di, WANG XueZheng. The QTL Analysis of Single Fruit Weight Associated Traits in Melon Based on CAPS Markers [J]. Scientia Agricultura Sinica, 2019, 52(9): 1601-1613.
[15] CHANG JiaYing,LIU ShuSen,MA HongXia,SHI Jie,GUO Ning,ZHANG HaiJian. Genetic Diversity Analysis of Curvularia lunata in Summer Maize in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2019, 52(5): 822-836.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!