Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (2): 295-306.doi: 10.3864/j.issn.0578-1752.2022.02.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Uniform Distance Single Seed Linear Seeding Method for Control of Wheat Physiology and Ecology

LI Pei(),HE RuiYin,WANG XiaoChan,DING QiShuo()   

  1. College of Engineering, Nanjing Agricultural University/Key Laboratory of Intelligent Agricultural Equipment of Jiangsu Province, Nanjing 210031
  • Received:2021-03-21 Accepted:2021-06-02 Online:2022-01-16 Published:2022-01-26
  • Contact: QiShuo DING E-mail:lipeinjau@163.com;qsding@njau.edu.cn

Abstract:

【Objective】The benefit of uniform distance single seed linear seeding method could be due to its tracing position and relative stable space assigned to each individual plant in the seeding stage. Thus, the precision seeding of wheat using an uniform distance single seed linear seeding (UDSSLS) was investigated and its density effect on wheat seedling and maturing stages were analyzed in this study. 【Method】Wheat species of Ningmai 13 was used for no-till post-paddy field experiment by using UDSSLS method in 2017 and 2018. Wheat seed was linear sowing in single seed and keeping seed-to-seed distance uniformly, in 1.5 (T1.5), 3.0 (T3) and 4.5 cm (T4.5), respectively. Row distance was 20 cm. Physiological and ecological monitoring and analyzing on the stand, individual plant and organic scales were made in both seedling and maturing stages. 【Result】 The stable density effect was created with the UDSSLS seeding method. And the density effect could be expressed in both the stand, the individual plant, and the organ level. A small seed distance significantly increased the 50% emergence days. Seed grain yield of the stand increased with reduced seed distance, while no significance was observed between T1.5 and T3, while which under T4.5 was significantly lower than that under other treatments. In the stand level, stem weight and ear weight under T1.5 and T3 were significantly lower than that under T4.5. In the individual plant level, however, plant ear number, ear-bearing grain number and grain yield increased significantly with increased seed distance. No difference was observed for 1000-grain weight. Above-ground biomass yield, ear biomass and stem weight were also increased with enlarged seed distance, which clearly explained a density compensation effect. In the individual level, the distribution of each indices were observed to shift from normal distribution to L shaped distribution. In the organic level, no significant difference was observed on ear grain yield and 1000-grain weight. Only ear grain number varied amid the 2 years. No significant difference was observed for above-ground biomass, leaf weight, stem weight and ear weight under different treatments. 【Conclusion】 The UDSSLS method created stable density effect on wheat, which could be observed in both seedling and maturing staged and quantified on the stand, individual plant and organic level. Complicated interactions existed among different phenomics and scales of observation. It thus might be concluded that UDSSLS could be potentially used for wheat physiology and ecology studies.

Key words: precision seeding, uniform distance single seed linear seeding, density effect, yield effect, emergence rate

Table 2

Effects of seed-to-seed distance on aboveground organ biomass of post-paddy wheat population"

年份
Year
处理
Treatment
叶重
Leaf weight
(kg• hm-2)
茎秆重
Stem weight
(kg• hm-2)
穗重
Ear weight
(kg• hm-2)
地上部生物量
Aboveground biomass (kg• hm-2)
收获指数
Harvest index
2016-2017 T1.5 2199.3a 2577.5a 7861.5a 12638.3a 0.412a
T3 2159.9a 2666.2a 8013.3a 12839.4a 0.392a
T4.5 1779.8a 2159.2b 6661.8b 10600.9a 0.382a
2017-2018 T1.5 2605.7a 3193.6a 9015.4a 14814.7a 0.362a
T3 2661.5a 2944.3ab 8292.9ab 13898.9ab 0.377a
T4.5 2070.2a 2703.2b 7630.7b 12404.1b 0.373a

Fig. 1

Emergence dynamics of post-paddy wheat under different treatments"

Table 1

Effects of seed-to-seed distance on yield and yield components of post-paddy wheat population"

年份
Year
处理
Treatment
穗数
Number of spikes (×104•hm-2)
总结实粒数
Total kernels (×104•hm-2)
千粒重
1000 grain weight (g)
总产量
Total yield (kg• hm-2)
2016-2017 T1.5 500.0a 22566.7ab 26.5a 5972.9a
T3 508.3a 24352.8a 23.8a 5787.4a
T4.5 400.0b 19602.8b 23.9a 4652.5b
2017-2018 T1.5 468.5a 16274.1ab 37.7a 6136.9a
T3 435.2a 16694.4a 36.1a 6016.4a
T4.5 361.1b 14316.7b 37.2a 5301.4b

Table 3

Effects of seed-to-seed distance on per-plant yield and yield components of post-paddy wheat"

年份
Year
处理
Treatment
单株穗数
Spikes per plant
单株结实粒数
Kernels per plant
单株千粒重
1000 grain weight (g)
单株产量
Yield per plant
(g)
出苗率
Seeding rate
(%)
2016-2017 T1.5 2.470c 111.841c 26.690a 2.963c 60.5b
T3 4.243b 202.967b 23.593a 4.834b 72.0a
T4.5 4.987a 245.862a 23.807a 5.831a 71.9a
2017-2018 T1.5 2.348c 81.492c 37.713a 3.074c 60.0b
T3 3.312b 127.061b 36.096a 4.588b 78.9a
T4.5 4.283a 167.918a 37.173a 6.229a 76.7a

Table 4

Effects of seed-to-seed distance on per plant aboveground organ biomass of post-paddy wheat"

年份
Year
处理
Treatment
叶重
Leaf weight
(g)
茎秆重
Stem weight
(g)
麦穗重
Ear weight
(g)
地上部生物量
Aboveground biomass (g)
收获指数
Harvest index
2016-2017 T1.5 1.087b 1.278c 3.901c 6.266c 0.409a
T3 1.796a 2.230b 6.665b 10.691b 0.391a
T4.5 2.391a 2.701a 8.342a 13.434a 0.379a
2017-2018 T1.5 1.323b 1.600c 4.514c 7.437c 0.362a
T3 2.012ab 2.251b 6.320b 10.582b 0.377a
T4.5 2.424a 3.173a 8.949a 14.546a 0.373a

Fig. 2

Effect of planting density on distribution of single plant index of post-paddy wheat"

Table 5

Effects of seed-to-seed distance on per stem-panicle yield and yield composition of post-paddy wheat"

年份
Year
处理
Treatment
千粒重 1000 grain weight (g) 结实粒数 Kernels per ear 产量 Yield per ear (g)
均值
Average value
cv
均值
Average value
cv 均值
Average value
cv
2016-2017 T1.5 25.888a 0.228 45.489a 0.261 1.209a 0.387
T3 23.188a 0.208 48.093a 0.278 1.145a 0.398
T4.5 23.202a 0.213 49.284a 0.281 1.172a 0.384
2017-2018 T1.5 37.230a 0.158 34.749b 0.419 1.310a 0.459
T3 36.096a 0.120 38.363a 0.296 1.384a 0.330
T4.5 37.173a 0.169 39.225a 0.318 1.455a 0.391

Table 6

Effects of seed-to-seed distance on per stem-panicle aboveground organ biomass of post-paddy wheat"

年份
Year
处理
Treatment
叶重
Leaf weight (g)
茎秆重
Stem weight (g)
麦穗重
Spike weight (g)
地上部生物量
Aboveground biomass (g)
收获指数
Harvest index
均值
Average value
cv 均值
Average value
cv 均值
Average value
cv 均值
Average value
cv 均值
Average value
cv
2016-2017 T1.5 0.436a 0.432 0.520a 0.312 1.589a 0.347 2.545a 0.317 0.404a 0.170
T3 0.427a 0.375 0.528a 0.275 1.581a 0.346 2.536a 0.316 0.382a 0.159
T4.5 0.484a 0.297 0.541a 0.266 1.677a 0.323 2.702a 0.294 0.369a 0.183
2017-2018 T1.5 0.554a 0.482 0.682a 0.467 1.925a 0.431 3.160a 0.420 0.359a 0.179
T3 0.609a 0.383 0.679a 0.340 1.908a 0.299 3.195a 0.298 0.377a 0.145
T4.5 0.565a 0.351 0.741a 0.369 2.092a 0.309 3.398a 0.304 0.373a 0.201

Fig. 3

Effect of seed-to-seed distance on distribution of single stem-panicle index of post-paddy wheat (2016-2017)"

[1] 梁晓艳, 郭峰, 张佳蕾, 孟静静, 李林, 万书波, 李新国. 单粒精播对花生冠层微环境、光合特性及产量的影响. 应用生态学报. 2015, 26(12) : 3700-3706.
LIANG X Y, GUO F, ZHANG J L, MENG J J, LI L, WAN S B, LI X G. Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaca). Chinese Journal of Applied Ecology, 2015, 26(12):3700-3706. (in Chinese)
[2] 张佳蕾, 张雷, 林英杰, 刘颖, 王建国, 郭峰, 唐朝辉, 李新国, 万书波. 单粒精播对花生生物学特性的影响. 中国油料作物学报, 2020, 42(6):960-969.
ZHANG J L, ZHANG L, LIN Y J, LIU Y, WANG J G, GUO F, TANG Z H, LI X G, WAN S B. Effects of single seed sowing on biological characteristics of peanut. Chinese Journal of Oil Crop Sciences, 2020, 42(6):960-969. (in Chinese)
[3] 李庆凯, 刘苹, 张佳蕾, 郭峰, 王建国, 耿耘, 杨莎, 孟静静, 唐朝辉, 李新国, 李林, 万书波. 花生单粒精播对根际土壤酚酸类物质含量和酶活性的影响. 中国油料作物学报, 2020, 42(6):978-984.
LI Q K, LIU P, ZHANG J L, GUO F, WANG J G, GENG Y, YANG S, MENG J J, TANG Z H, LI X G, LI L, WAN S B. Effects of single-seed sowing on phenolic acid content and enzyme activity in rhizosphere soil of peanut. Chinese Journal of Oil Crop Sciences, 2020, 42(6):978-984. (in Chinese)
[4] ZHAO C X, SHAO C L, YANG Z L, WANG Y F, ZHANG X J, WANG M L, MILTON E, MCGIFFEN J. Effects of planting density on pod development and yield of peanuts under the pattern of precision planted peanuts. Legume Research, 2017, 40(5):901-905.
[5] 张军昌, 薛晶峰, 杜荣飞, 郭呈成, 金秀男, 孙涛. 一种柔性夹持带式玉米精量排种装置及玉米播种机: CN 111642184 A. 2020-09-11[2021-01-04].
ZHANG J C, XUE J F, DU R F, GUO C C, JIN X N, The invention relates to a flexible clamping belt type corn precision seed metering device and a corn seeder. CN 111642184 A. 2020-09-11[2021-01-04]. (in Chinese)
[6] 翟云龙, 陈国栋, 吴全忠, 王冀川, 黄光伟, 陈佳林. 一种麦后复播玉米免耕精量播种机: CN 211210463 U. 2020-08-11[2021-01-04].
ZHAI Y L, CHEN G D, WU Q Z, WANG J C, HUANG G W, CHEN J L. A kind of no tillage precision seeder for corn replanting after wheat. CN 211210463 U. (in Chinese)
[7] 刘英楠, 衣淑娟, 李衣菲, 陶桂香, 毛欣, 张东明. 玉米气吸式精密排种器试验研究. 农机化研究, 2021, 43(10):172-177.
LIU Y N, YI S J, LI Y F, TAO G X, MAO X, ZHANG D M. Experimental study on air suction precision seed metering device for Maize. Journal of Agricultural Mechanization Research, 2021, 43(10):172-177. (in Chinese)
[8] 赵凯男, 常旭虹, 王德梅, 陶志强, 杨玉双, 马瑞琦, 朱英杰, 徐哲莉, 张保军, 赵广才. 立体匀播和施氮量对冬小麦产量构成及旗叶光合性能的影响. 作物杂志, 2019(1):103-110.
ZHAO K N, CHANG X H, WANG D M, TAO Z Q, YANG Y S, MA R Q, ZHU Y J, XU Z L, ZHANG B J, ZHAO G C. Effects of tridimensional uniform sowing and fertilizer on grain and physiological characteristics of winter wheat. Crops, 2019(1):103-110. (in Chinese)
[9] 常旭虹, 王艳杰, 陶志强, 王德梅, 马少康, 杨玉双, 徐哲莉, 张燕, 赵广才. 小麦立体匀播栽培技术体系. 作物杂志, 2019(2):168-172.
CHANG X H, WANG Y J, TAO Z Q, WANG D M, MA S K, YANG Y S, XU Z L, ZHANG Y, ZHAO G C. Tridimensional uniform sowing cultivation system of wheat. Crops, 2019(2):168-172. (in Chinese)
[10] LIU W, HU J P, ZHAO X S, PAN H R, IMRAN A L, WANG W, ZHAO J. Development and experimental analysis of a seeding quantity sensor for the precision seeding of small seeds. Sensors, 2019, 19(23):5191.
doi: 10.3390/s19235191
[11] 金鑫, 李倩文, 苑严伟, 邱兆美, 周利明, 贺智涛. 2BFJ-24型小麦精量播种变量施肥机设计与试验. 农业机械学报, 2018, 49(5):84-92.
JIN X, LI Q W, YUAN Y W, QIU Z M, ZHOU L M, HE Z T. Design and test of 2BFJ-24 type variable fertilizer and wheat precision seed sowing machine. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5):84-92. (in Chinese)
[12] 崔东云. 基于 PWM电液比例控制的气吸式小麦精播装置设计与研究[D]. 泰安: 山东农业大学, 2019.
CUI D Y. Design and research of air-suction wheat precision seeding device based on PWM electro-hydraulic proportional control[D]. Taian: Shandong Agricultural University, 2019. (in Chinese)
[13] 林海波, 董树亮, 张颖, 孙中旭, 仪垂杰. 基于CompactRIO的小麦精播机器人控制系统. 仪器仪表学报, 2013, 34(S1):99-105.
LIN H B, DONG S L, ZHANG Y, SUN Z X, YI C J. R&D of wheat seed robot control system based on CompactRIO. Chinese Journal of Scientific Instrument, 2013, 34(S1):99-105. (in Chinese)
[14] 钱彬, 韩洪杰. 精量播种机内部信号处理与传输智能化分析. 农机化研究, 2020, 42(10):205-210.
QIAN B, HAN H J. Internal signal processing and precision of planter. Journal of Agricultural Mechanization Research, 2020, 42(10):205-210. (in Chinese)
[15] 刘宏新, 王盼, 改广伟, 相斌斌. 基于五杆机构的注射式免耕播种成穴轨迹分析与参数求解. 农业工程学报, 2017, 33(8):21-29.
LIU H X, WANG P, GAI G W, XIANG B B. Analysis and parameter solution of injection type no-till seeding into hole trajectory based on five-bar mechanism. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8):21-29. (in Chinese)
[16] 侯华铭, 崔清亮, 张燕青, 胡席忠, 畅治兵. 2BZ-2型谷子精少量播种机的研制. 农业工程学报, 2017, 33(13):16-22.
HOU H M, CUI Q L, ZHANG Y Q, HU X Z, CHANG Z B. Development of 2BZ-2 type fine and small-amount seeder for foxtail millet. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13):16-22. (in Chinese)
[17] 张恒榜, 赵健, 胡广锐, 卜令昕, 王志伟, 齐闯, 韩冰, 陈军. 窝眼轮式小麦排种器参数优化试验研究. 农机化研究, 2020, 42(9):139-144.
ZHANG H B, ZHAO J, HU G R, BO L X, WANG Z W, QI C, HAN B, CHEN J. Experimental study on parameter optimization of socket wheel wheat metering device. Journal of Agricultural Mechanization Research, 2020, 42(9):139-144. (in Chinese)
[18] 刘俊孝, 王庆杰, 李洪文, 何进, 卢彩云, 王超. 针孔管式小麦匀播机构气力损耗特性数值分析与试验. 农业机械学报, 2020, 51(6):29-37.
LIU J X, WANG Q J, LI H W, HE J, LU C Y, WANG C. Numerical analysis and experiment on pneumatic loss characteristic of pinhole-tube wheat uniform seeding mechanism. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6):29-37. (in Chinese)
[19] 刘彩玲, 都鑫, 张福印, 马拓, 张皓瑒, 黎艳妮. 锥面导流水平盘式小麦精量排种器设计与试验. 农业机械学报, 2018, 49(12):56-65.
LIU C L, DU X, ZHANG F Y, MA T, ZHANG H Y, LI Y N. Design and test of cone diversion type horizontal plate wheat precision seed-metering device. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12):56-65. (in Chinese)
[20] 孔令英, 赵俊晔, 于振文, 石玉. 宽幅播种条件下种植密度对小麦群体结构和光能利用率的影响. 麦类作物学报, 2020, 40(7):850-856.
KONG L Y, ZHAO J Y, YU Z W, SHI Y. Effect of planting density on population structure and light use efficiency of wheat under wide-width sowing conditions. Journal of Triticeae Crops, 2020, 40(7):850-856. (in Chinese)
[21] 郭瑞, 黄晓高, 温明星, 陈琛, 柳聚阁, 单延博, 曲朝喜, 李东升. 追氮量和种植密度对春性强筋小麦镇麦12号籽粒产量和品质的影响. 核农学报, 2020, 34(8):1834-1839.
GUO R, HUANG X G, WEN M X, CHEN C, LIU J G, SHAN Y B, QU Z X, LI D S. Effects of nitrogen topdressing amount and planting density on grain yield and quality of spring strong gluten wheat Zhenmai 12. Journal of Nuclear Agricultural Sciences, 2020, 34(8):1834-1839. (in Chinese)
[22] 吴鹏, 李福建, 于倩倩, 赵伟, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 耕作与播种方式、密度和施氮量对稻茬小麦幼苗质量的影响. 麦类作物学报, 2020, 40(2):1-9.
WU P, LI F J, YU Q Q, ZHAO W, ZHU M, LI C Y, ZHU X K, DING J F, GUO W S. Effects of tillage and seeding method, plant density, and nitrogen rate on seeding quality of wheat following rice. Journal of Triticeae Crops, 2020, 40(2):1-9. (in Chinese)
[23] BASTOS L M, CARCIOCHI W, LOLLATO R P, JAENISCH B R, REZENDE C R, SCHWALBERT R, VARA PRASAD P V, ZHANG G R, FRITZ A K, FOSTER C, WRIGHT Y, YOUNG S, BRADLEY P, CIAMPITTI I A. Winter wheat yield response to plant density as a function of yield environment and tillering potential: A Review and Field Studies. Frontiers in Plant Science, 2020, 11:54.
doi: 10.3389/fpls.2020.00054
[24] LI D X, ZHANG D, WANG H G, LI H R, FANG Q, LI H Y, LI R Q. Optimized planting density maintains high wheat yield under limiting irrigation in north China plain. International Journal of Plant Production, 2020, 14(1):107-117.
doi: 10.1007/s42106-019-00071-7
[25] 李仕现, 小麦间苗增产效果分析. 新农村(黑龙江), 2017(33):25.
LI S X. Analysis on yield increasing effect of wheat thinning. New Countryside(Heilongjiang), 2017(33):25. (in Chinese)
[26] 李金贵, 小麦疏苗增产原因及技术措施. 农村实用工程技术, 1998: 13.
LI J G. Reasons and technical measures of increasing wheat yield by thinning seedlings. Agriculture Engineering Technology, 1998: 13. (in Chinese)
[27] 李海康, 丁启朔, 孙克润, 何瑞银, 汪小旵, 厉翔, 刘富玺. 稻茬小麦单粒精播的幼苗密度效应. 江苏农业学报, 2019, 35(6):1316-1322.
LI H K, DING Q S, SUN K R, HE R Y, WANG X C, LI X, LIU F X. Seedling density effects of post-paddy wheat under precision seeding. Jiangsu Journal of Agricultural Sciences, 2019, 35(6):1316-1322. (in Chinese)
[28] 李朝苏, 汤永禄, 吴春, 黄钢. 播种方式对稻茬小麦生长发育及产量建成的影响. 农业工程学报, 2012, 28(18):36-43.
LI C S, TANG Y L, WU C, HAUNG G. Effect of sowing patterns on growth, development and yield formation of wheat in rice stubble land. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(18):36-43. (in Chinese)
[29] 李朝苏, 汤永禄, 解立胜, 黄钢, 钟贵祥, 吴春, 程少兰. 2BMFDC-6型稻茬麦半旋播种机设计与性能试验. 西南农业学报, 2011, 24(2):789-793.
LI C S, TANG Y L, XIE L S, HUANG G, ZHONG G X, WU C, CHENG S L. Design and experiment of 2BMFDC-6 half-tillage seeder of wheat after rice. Southwest China Journal of Agricultural Sciences, 2011, 24(2):789-793. (in Chinese)
[30] 芮超杰, 丁启朔, 李毅念, 陆明洲, 薛金林, 邱威. 基于单片机技术的露播种子区微气候评价. 南京农业大学学报, 2016, 39(6):1055-1061.
RUI C J, DING Q S, LI Y N, LU M Z, XUE J L, QIU W. Quantifying seed-zone microclimate of surface seeding with micro-chip technology. Journal of Nanjing Agricultural University, 2016, 39(6):1055-1061. (in Chinese)
[31] CHEN Y, TESSIER S, IRVINE B. Drill and crop performances as affected by different drill configurations for no-till seeding. Soil and Tillage Research, 2004, 77(2):147-155.
doi: 10.1016/j.still.2003.12.001
[32] ZAJAC T, OLEKSY A, STOKŁOSA A, KLIMEK K A, STYRC N, MAZUREK R, BUDZYNSKI W. Pure sowings versus mixtures of winter cereal species as an effective option for fodder-grain production in temperate zone. Field Crops Research, 2014, 166:152-161.
doi: 10.1016/j.fcr.2014.06.019
[33] HUSSAIN M, KHAN M B, MEHMOOD Z, ZIA A B, JABRAN K, FAROOQ M. Optimizing row spacing in wheat cultivars differing in tillering and stature for higher productivity. Archives of Agronomy and Soil Science, 2013, 59(11):1457-1470.
doi: 10.1080/03650340.2012.725937
[34] 陈昱利, 杨平, 张文宇, 张伟欣, 诸叶平, 李世娟, 巩法江, 毕海滨, 岳霆, 曹宏鑫. 基于生物量的冬小麦越冬前植株地上部形态结构模型. 作物学报, 2016, 42(5):743-750.
doi: 10.3724/SP.J.1006.2016.00743
CHEN Y L, YANG P, ZHANG W Y, ZHANG W X, ZHU Y P, LI S J, GONG F J, BI H B, YUE T, CAO H X. Aboveground architecture model based on biomass of winter wheat before overwintering. Acta Agronomica Sinica, 2016, 42(5):743-750. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00743
[35] FANG Y, XU B C, TURNER N C, LI F M. Grain yield, dry matter accumulation and remobilization, and root respiration in winter wheat as affected by seeding rate and root pruning. European Journal of Agronomy, 2010, 33(4):257-266.
doi: 10.1016/j.eja.2010.07.001
[36] TOMPKINS D K, HULTGREEN G E, WRIGHT A T, FOWLE D B. Seed rate and row spacing of no-till winter wheat. Agronomy Journal, 1991, 83(4):684-689.
doi: 10.2134/agronj1991.00021962008300040007x
[37] HILTBRUNNER J, STREIT B, LIEDGENS M. Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover? Field Crops Research, 2007, 102(3):163-171.
doi: 10.1016/j.fcr.2007.03.009
[38] 殷复伟, 王文鑫, 谷淑波, 王东. 株行距配置对宽幅播种小麦产量形成的影响. 麦类作物学报, 2018, 38(6):710-717.
YIN F W, WANG W X, GU S B, WANG D. Effect of planting distance configuration repression on wheat yield formation with wide planting. Journal of Triticeae Crops, 2018, 38(6):710-717. (in Chinese)
[39] 郑飞娜, 初金鹏, 张秀, 费立伟, 代兴龙, 贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应. 作物学报, 2020, 46(3):423-431.
doi: 10.3724/SP.J.1006.2020.91046
ZHENG F N, CHU J P, ZHANG X, FEI L W, DAI X L, HE M R. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar. Acta Agronomica Sinica, 2020, 46(3):423-431. (in Chinese)
doi: 10.3724/SP.J.1006.2020.91046
[40] 马宏亮, 王秀芳, 樊高琼, 吴中伟, 李金刚. 密度对四川丘陵旱地带状种植小麦群体质量、产量及边际效应的影响. 麦类作物学报, 2015, 35(11):1551-1557.
MA H L, WANG X F, FAN G Q, WU Z W, LI J G. Effect of density on population quality, yield and border effect of strip planting wheat in Sichuan hilly areas. Journal of Triticeae Crops, 2015, 35(11):1551-1557. (in Chinese)
[41] ARDUINI I, MASONI A, ERCOLI L, MARIOTTI M. Grain yield, and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate. European Journal of Agronomy, 2006, 25(4):309-318.
doi: 10.1016/j.eja.2006.06.009
[42] BAVEC M, BAVEC F, VARGA B, KOVACˇEVIC V. Relationships among yield, it’s quality and yield components in winter wheat (Triticum aestivum L. ) cultivars affected by seeding rates. Die Bodenkultur, 2002, 53(3):143-151.
[43] 温明星, 陈爱大, 李东升, 曲朝喜, 蔡金华. 播期和密度对镇麦168农艺和品质性状的影响. 麦类作物学报, 2013, 33(6):1243-1247.
WEN M X, CHEN A D, LI D S, QU C X, CAI J H. Effects of sowing date and planting density on agronomic and quality characters of Zhenmai 168. Journal of Triticeae Crops, 2013, 33(6):1243-1247. (in Chinese)
[44] 张向前, 陈欢, 赵竹, 李玮, 杜世州, 乔玉强, 曹承富. 密度和行距对早播小麦生长、光合及产量的影响. 麦类作物学报, 2015, 35(1):86-92.
ZHANG X Q, CHEN H, ZHAO Z, LI W, DU S Z, QIAO Y Q, CAO C F. Effect of planting density and row spacing on growth, photosynthesis and yield of wheat under early sowing. Journal of Triticeae Crops, 2015, 35(1):86-92. (in Chinese)
[45] 邵凯, 李建伟, 于立河, 张景云, 薛赢文, 金珊珊, 郭建华. 不同行距和密度对耐密品种克旱16花后个体质量和产量的影响. 麦类作物学报, 2016, 36(4):465-471.
SHAO K, LI J W, YU L H, ZHANG J Y, XUE Y W, JIN S S, GUO J H. Effect of plant density and row spacing on growth and yield of post-anthesis individual in spring wheat. Journal of Triticeae Crops, 2016, 36(4):465-471. (in Chinese)
[46] 张佳蕾, 郭峰, 苗昊翠, 李利民, 杨莎, 耿耘, 孟静静, 李新国, 万书波. 单粒精播对高产花生株间竞争缓解效应研究. 花生学报, 2018, 47(2):52-58.
ZHANG J L, GUO F, MIAO H C, LI L M, YANG S, GENG Y, MENG J J, LI X G, WAN S B. Study on relieving inter plant competition by single seed sowing of high yield peanut. Journal of Peanut Science, 2018, 47(2):52-58. (in Chinese)
[47] 刘俊华, 吴正锋, 沈浦, 于天一, 郑永美, 孙学武, 李林, 陈殿绪, 王才斌, 万书波. 氮肥与密度互作对单粒精播花生根系形态、植株性状及产量的影响. 作物学报, 2020, 46(10):1605-1616.
LIU J H, WU Z F, SHEN P, YU T Y, ZHENG Y M, SUN X W, LI L, CHEN D X, WANG C B, WAN S B. Effects of nitrogen and density interaction on root morphology, plant characteristic and pod yield under single seed precision sowing in peanut. Acta Agronomica Sinica, 2020, 46(10):1605-1616. (in Chinese)
[48] MILLER T E, WINN A A, SCHEMSKE D W. The effects of density and spatial distribution on selection for emergence time in prunella Vulgaris (Lamiaceae). American Journal of Botany, 1994, 81(1):1-6.
[49] SOOMRO U A, RAHMAN M U, ODHANO E A, GUL S, TAREEN A Q. Effects of sowing method and seed rate on growth and yield of wheat (Triticum aestivum). World Journal of Agricultural Sciences, 2009, 5(2):159-162.
[50] JAAFRY S W H, LI D Z, YI O Y, LIU L, LI L L, TINGJUN Y, WEI X Y, ZHU Y Y, SUN Y M, REN Z X, KONG R P. Interactions among individuals of Setaria Italica at different levels of genetic relatedness under different nutrient and planting density conditions. Acta Oecologica, 2020, 105:103549.
doi: 10.1016/j.actao.2020.103549
[51] 陈宏, 张保军, 海江波, 董永利, 刘天煜, 赵凯男. 基肥和播种密度对冬小麦干物质积累及光合特性和产量的影响. 西北农业学报, 2019, 28(12):1969-1977.
CHEN H, ZHANG B J, HAI J B, DONG Y L, LIU T Y, ZHAO K N. Effects of base fertilizer and sowing density on dry matter accumulation, photosynthetic characteristics and yield of winter wheat. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(12):1969-1977. (in Chinese)
[52] 吴和平, 吕永军, 韩玉林, 邹少奎, 黄峰, 王丽娜, 李楠楠, 张倩, 李顺成. 不同播种密度对周麦18号小麦生长发育及产量的影响. 现代农业科技, 2019(23):1-2, 4.
WU H P, LÜ Y J, HAN Y L, ZOU S K, HUANG F, WANG L N, LI N N, ZHANG Q, LI S C. Effects of different sowing density on growth and yield of Zhoumai 18. Modern Agricultural Science and Technology, 2019(23):1-2, 4. (in Chinese)
[53] LATI R N, FILIN S, EIZENBERGI H. Black nightshade (Solanum nigrum) emergence and development is affected by seed density and burial depth. Phytoparasitica, 2012, 40:195-203.
doi: 10.1007/s12600-011-0210-4
[54] BALOCH M S, SHAH I T H, NADIM M A, KHAN M I, KHAKWANI A A. Effect of seeding density and planting time on growth and yield attributes of wheat. The Journal of Animal & Plant Sciences, 2010, 20(4):239-240.
[1] YANG JunHao,LUO YongLi,CHEN Jin,JIN Min,WANG ZhenLin,LI Yong. Effects of Main Food Yield Under Straw Return in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(21): 4415-4429.
[2] YIN MinHua, LI YuanNong, CHEN PengPeng, XU LuQuan, SHEN ShengLong, WANG XingYao . Effect of No-Tillage on Maize Yield in Northern Region of China—A Meta-analysis [J]. Scientia Agricultura Sinica, 2018, 51(5): 843-854.
[3] LongLong SUI,JingShan TIAN,HeSheng YAO,PengPeng ZHANG,FuBin LIANG,Jin WANG,WangFeng ZHANG. Effects of Different Sowing Dates on Emergence Rates and Seedling Growth of Cotton Under Mulched Drip Irrigation in Xinjiang [J]. Scientia Agricultura Sinica, 2018, 51(21): 4040-4051.
[4] LI Chao, CHENG Deng-Fa, LIU Huai, ZHANG Yun-Hui, SUN Jing-Rui. Effects of Temperature on the Distribution of the Colorado Potato Beetle (Leptinotarsa decemlineata)—Effect of High Temperature on Its Emergence in Turpan, Xinjiang [J]. Scientia Agricultura Sinica, 2013, 46(4): 737-744.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!