Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (11): 2307-2320.doi: 10.3864/j.issn.0578-1752.2013.11.015

• HORTICULTURE • Previous Articles     Next Articles

Advances in Research of Biosynthesis and Hydrolysis Pathways of Gallated Catechins in Camellia sinensis

 XIA  Tao, GAO  Li-Ping, LIU  Ya-Jun, WANG  Yun-Sheng, LIU  Li, ZHAO  Lei, JIANG  Xiao-Lan, QIAN  Yu-Mei   

  1. 1.Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036
    2.School of Biology Science, Anhui Agricultural University, Hefei 230036
  • Received:2012-12-05 Online:2013-06-01 Published:2013-04-01

Abstract: Gallated catechins have stronger effects than non-galloylated catechins, both on the product quality in tea processing and the pharmacological efficacy to human beings. The biosynthesis and hydrolysis pathways as well as molecular regulation mechanism of gallated catechins, have been a key problem that perplexes tea industry since long, and also been an unsolved scientific issue in Vitis vinifera or Diospyros kaki which is riched in procyanidins (PAs) or condensed tannins (CAs). Advances in research of biosynthetic and hydrolysis pathways of gallated catechins in Camellia sinensis by this research group were reviewed. The results showed that the means of catechin galloylation were similar to that of hydrolyzable tannin synthesis, in which, β-glucogallin (βG) acted as an acyl donor, and which involved two enzymes, UDP-glucose: galloyl-1-O-β-D- glucosyltransferase (UGGT) and epicatechin:1-O-galloyl-β-D-glucose O-galloyltransferase (ECGT). Besides, the galloylated catechins could be hydrolyzed to ungalloylated catechins and gallic acid with the galloylated catechins hydrolase (GCH) action in Camellia sinensis. In addition, recent progress in biosynthesis, polymerization, glycosylation and methylation of flavan-3-ols in the world was also reviewed.

Key words: Camellia sinensis , gallated catechins , biosynthesis

[1]Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea-a review. Journal of the American College of Nutrition, 2006, 25: 79-99.

[2]Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001, 126: 485-493.

[3]Xie D Y, Sharma S B, Paiva N L, Ferreira D, Dixon R A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science, 2003, 299: 396-399.

[4]Dixon R A, Xie D Y, Sharma S B. Proanthocyanidins-a final frontier in flavonoid research? New Phytologist, 2005, 165: 9-28.

[5]Dixon R A, Liu C, Jun J H. Metabolic engineering of anthocyanins and condensed tannins in plants. Current Opinion in Biotechnology, 2013, 24(3): 329-335.

[6]Pang Y, Peel G J, Sharma S B, Tang Y, Dixon R A. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 14210-14215.

[7]Zhao J, Pang Y, Dixon R A. The Mysteries of proanthocyanidin transport and polymerization. Plant Physiology, 2010, 153: 437-443.

[8]Zhao J, Dixon R A. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell, 2009, 21: 2323-2340.

[9]Verdier J, Zhao J, Torres-Jerez I, Ge S, Liu C, He X, Mysore K S, Dixon R A, Udvardi M K. MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 1766-1771.

[10]Hancock K R, Collette V, Fraser K, Greig M, Xue H, Richardson K, Jones C, Rasmussen S. Expression of the R2R3-MYB transcription factor TaMYB14 from trifolium arvense activates proanthocyanidin biosynthesis in the Legumes trifolium repens and Medicago sativa. Plant Physiology, 2012, 159: 1204-1220.

[11]Akagi T, Katayama-Ikegami A, Kobayashi S, Sato A, Kono A, Yonemori K. Seasonal abscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon fruit. Plant Physiology, 2012, 158: 1089-1102.

[12]Wang Y S, Gao L P, Shan Y, Liu Y J, Tian Y W, Xia T. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 2012, 141: 7-16.

[13]Saijo R. Pathway of gallic acid biosynthesis and its esterification with catechins in young tea shoots. Agricultural and Biological Chemistry, 1983, 47: 455-460.

[14]Yang D, Liu Y, Sun M, Zhao L, Wang Y, Chen X, Wei C, Gao L, Xia T. Differential gene expression in tea (Camellia sinensis (L.) O. Kuntze ) calli with different morphologies and catechin contents. Journal of Plant Physiology, 2011,169: 163-175.

[15]Wang Y S, Gao L P, Wang Z R, Liu Y J, Sun M L, Yang D Q, Wei C L, Shan Y, Xia T. Light-induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 2011,133: 72-83.

[16]Stafford H A, Lester H H. Flavan-3-ol Biosynthesis: The conversion of (+)-dihydroquercetin and flavan-3,4-cis-diol (leucocyanidin) to (+)-catechin by reductases extracted from cell suspension cultures of douglas fir. Plant Physiology, 1984, 76: 184-186.

[17]Stafford H A, Lester H H. Flavan-3-ol Biosynthesis: The conversion of (+)-dihydromyricetin to its flavan-3,4-diol (leucodelphinidin) and to (+)-gallocatechin by reductases extracted from tissue cultures of Ginkgo biloba and Pseudotsuga menziesii. Plant Physiology, 1985, 78: 791-794.

[18]Gross G G. From lignins to tannins: forty years of enzyme studies on the biosynthesis of phenolic compounds. Phytochemistry, 2008, 69: 3018-3031.

[19]Niemetz R, Gross G G. Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry, 2005, 66: 2001-2011.

[20]Liu Y, Gao L, Liu L, Yang Q, Lu Z, Nie Z, Wang Y, Xia T. Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant [Camellia sinensis]. Journal of Biological Chemistry, 2012, 287(53): 44406-44417.

[21]Li A X, Steffens J C. An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 6902-6907.

[22]Fraser C M, Rider L W, Chapple C. An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase-like gene family. Plant Physiology, 2005, 138: 1136-1148.

[23]Mugford S T, Qi X Q, Bakht S, Hill L, Wegel E, Hughes R K, Papadopoulou K, Melton R, Philo M, Sainsbury F, Lomonossoff G P, Roy A D, Goss R J M, Osbourn A.  A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell, 2009, 21: 2473-2484.

[24]Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi  N, Caboche M. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Physiology and Plant Molecular Biology, 2006, 57: 405-430.

[25]Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62: 2465-2483.

[26]夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展. 中国农业科学, 2009, 42(8): 2899-2908.

Xia T, Gao L P. Advances in biosynthesis pathways and regulation of flavonoids and catechins. Scientia Agricultura Sinica, 2009, 42(8): 2899-2908. (in Chinese)

[27]Lin L Z, Chen P, Harnly J M. New phenolic components and chromatographic profiles of green and fermented teas. Journal of Agricultural and Food Chemistry, 2008, 56: 8130-8140.

[28]Norimoto S. A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicas genome. Journal of Experimental Botany, 2005, 25: 2573-2585.

[29]孙美莲, 王云生, 杨冬青, 韦朝领, 高丽萍, 夏涛, 单育, 骆洋. 茶树实时荧光定量 PCR 分析中内参基因的选择. 植物学报, 2010, 45: 579-587.

Sun M L, Wang Y S, Yang D Q, Wei C L, Gao L P, Xia T, Shan Y, Luo Y. Reference genes for real-time fluorescence quantitative PCR in Camellia sinensis. Chinese Bulletin of Botany, 2010, 45: 579-587. (in chinese)

[30]张立明, 王云生, 高丽萍, 夏涛. 茶树不同儿茶素含量愈伤组织的蛋白差异分析. 中国农业科学, 2010, 43: 4053-4062.

Zhang L M, Wang Y S, Gao L P, Xia T. Analysis of differential protein expression of tea callus with different catechins contents. Scientia Agricultura Sinica, 2010, 43: 4053-4062. (in Chinese)

[31]单育, 李伟伟, 王云生, 刘亚军, 王弘雪, 王晓帆, 卢忠尉, 田艳维, 高丽萍, 夏涛. 茶树幼苗发育过程中儿茶素合成与积累变化的研究. 安徽农业大学学报, 2011, 38(4): 600-605.

Shan Y, Li W W, Wang Y S, Liu Y J, Wang H X,Wang X F, Lu Z W, Tian Y W, Gao L P, Xia T. Catechins synthesis and accumulation in tea seedlings at different development stages. Journal of Anhui Agricultural University, 2011, 38(4): 600-605. (in Chinese)

[32]Zhang X L, Liu Y J, Gao K J, Zhao L, Liu L, Wang Y S, Sun M L, Gao L P, Xia T. Characterisation of anthocyanidin reductase from Shuchazao green tea. Journal of the Science of Food and Agriculture, 2012, 92: 1533-1539.

[33]Liu Y, Gao L, Xia T, Zhao L. Investigation of the site-specific accumulation of catechins in the tea plant (Camellia sinensis (L.) O. Kuntze) via vanillin-HCl staining. Journal of Agricultural and Food Chemistry, 2009, 57: 10371-10376.

[34]Dewick P, Haslam E. Phenol biosynthesis in higher plants. Gallic acid. Biochemical Journal, 1969, 113: 537.

[35]Ishikura N, Hayashida S, Tazaki K. Biosynthesis of gallic and ellagic acids with 14C-labeled compounds in Acer and Rhus leaves. Botanical Magazine, 1984, 97: 355-367.

[36]Dyer W E, Henstrand J M, Handa A K, Herrmann K M. Wounding induces the first enzyme of the shikimate pathway in Solanaceae. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86: 7370.

[37] Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology, 2006, 140: 637-646.

[38]Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inze D, Van Breusegem F. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis.. Plant Physiology, 2005, 139: 806-821.

[39]Morcuende R, Bari R, Gibon Y, Zheng W M, Pant B D, Blasing O, Usadel B, Czechowski T, Udvardi M K, Stitt M, Scheible W R Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environment, 2007, 30: 85-112.

[40]Tzin V, Galili G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular Plant, 2010, 3: 956-972.

[41]Fiedler E, Schultz G. Localization, purification, and characterization of shikimate oxidoreductase-dehydroquinate hydrolyase from stroma of spinach chloroplasts. Plant Physiology, 1985, 79: 212.

[42]Singh S A, Christendat D. The DHQ-dehydroshikimate-SDH- shikimate-NADP (H) Complex: insights into metabolite transfer in the shikimate pathway. Crystal Growth and Design, 2007, 7: 2153-2160.

[43]Peek J, Lee J, Hu S, Senisterra G, Christendat D. Structural and mechanistic analysis of a novel class of shikimate dehydrogenase: Evidence for a conserved catalytic mechanism in the shikimate dehydrogenase family. Biochemistry, 2011, 50: 8616-8627.

[44]Singh S, Korolev S, Koroleva O, Zarembinski T, Collart F, Joachimiak A, Christendat D. Crystal structure of a novel shikimate dehydrogenase from Haemophilus influenzae. Journal of Biological Chemistry, 2005, 280: 17101.

[45]Singh S A, Christendat D. Structure of Arabidopsis dehydroquinate dehydratase-shikimate dehydrogenase and implications for metabolic channeling in the shikimate pathway. Biochemistry, 2006, 45: 7787-7796.

[46]Ding L, Hofius D, Hajirezaei M R, Fernie AR, Börnke F, Sonnewald U. Functional analysis of the essential bifunctional tobacco enzyme 3-dehydroquinate dehydratase/shikimate dehydrogenase in transgenic tobacco plants. Journal of Experimental Botany, 2007, 58: 2053-2067.

[47]Ingo Werner A B, Wolfgang Eisenreich. Retrobiosynthetic NMR studies with 13C-labeled glucose. Journal of Biological Chemistry, 1997, 272: 25474-25482.

[48]Werner R A, Rossmann A, Schwarz C, Bacher A, Schmidt H L, Eisenreich W. Biosynthesis of gallic acid in Rhus typhina: discrimination between alternative pathways from natural oxygen isotope abundance. Phytochemistry, 2004, 65: 2809-2813.

[49]Ossipov V, Salminen J P, Ossipova S, Haukioja E, Pihlaja K. Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway. Biochemical Systematics and Ecology, 2003, 31: 3-16.

[50]Muir R M, Ibáñez A M, Uratsu S L, Ingham E S, Leslie C A, McGranahan G H, Batra N, Goyal S, Joseph J, Jemmis E D. Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia). Plant Molecular Biology, 2011, 75: 555-565.

[51]Akagi T, Ikegami A, Suzuki Y, Yoshida J, Yamada M, Sato A, Yonemori K. Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon (Diospyros kaki Thunb.) fruit. Planta, 2009, 230: 899-915.

[52]Li A X, Eannetta N, Ghangas G S, Steffens J C. Glucose polyester biosynthesis. Purification and characterization of a glucose acyltransferase. Plant Physiology, 1999, 121: 453-460.

[53]Lehfeldt C, Shirley A M, Meyer K, Ruegger M O, Cusumano J C, Viitanen P V, Strack D, Chapple C  Cloning of the SNG1 gene of arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell, 2000, 12: 1295-1306.

[54]Stehle F, Stubbs M, Strack D, Milkowski C. Heterologous expression of a serine carboxypeptidase-like acyltransferase and characterisation of the kinetic mechanism. FEBS Journal, 2008, 275: 775-787.

[55]Teutschbein J, Gross W, Nimtz M, Milkowski C, Hause B, Strack D. Identification and localization of a lipase-like acyltransferase in phenylpropanoid metabolism of tomato (Solanum lycopersicum). Journal of Biological Chemistry, 2010, 285: 38374-38381.

[56]Campbell J A, Davies G J, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochemical Engineering Journal, 1997, 326: 929-939.

[57]Coutinho P M, Deleury E, Davies G J, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. Journal of Molecular Biology, 2003, 328: 307-317.

[58]Hou B, Lim E K, Higgins G S, Bowles D J. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. Journal of Biological Chemistry, 2004, 279: 47822-47832.

[59]Ross J, Li Y, Lim E, Bowles D J. Higher plant glycosyltransferases. Genome Biology, 2001, 2(2): REVIEWS3004.

[60]Wang X. Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Letters, 2009, 583: 3303-3309.

[61]Hrazdina G, Zobel A M, Hoch H C. Biochemical, immunological, and immunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84: 8966-8970.

[62]Khater F, Fournand D, Vialet S, Meudec E, Cheynier V, Terrier N. Identification and functional characterization of cDNAs coding for hydroxybenzoate/hydroxycinnamate glucosyltransferases co-expressed with genes related to proanthocyanidin biosynthesis. Journal of Experimental Botany, 2012, 63: 1201-1214.

[63]Akoh C C, Lee G C, Liaw Y C, Huang T H, Shaw J F. GDSL family of serine esterases/lipases. Progress in Lipid Research, 2004, 43(6): 534-552.

[64]Clauss K, Baumert A, Nimtz M, Milkowski C, Strack D. Role of a GDSL lipase‐like protein as sinapine esterase in Brassicaceae. The Plant Journal, 2008, 53: 802-813.

[65]Clauss K, von Roepenack-Lahaye E, Boettcher C, Roth M R, Welti R, Erban A, Kopka J, Scheel D, Milkowski C, Strack D. Over expression of sinapine esterase BnSCE3 in Brassica napus seeds triggers global changes in seed metabolism. Plant Physiology, 2011, 155: 1127-1145.

[66]Aguilar C N, Rodríguez R, Gutiérrez-Sánchez G, Augur C, Favela-Torres E, Prado-Barragan L A, Ramírez-Coronel A, Contreras- Esquivel J C. Microbial tannases: advances and perspectives. Applied Microbiology and Biotechnology, 2007, 76: 47-59.

[67]Belur P, Mugeraya G. Microbial production of taimase: state of the art. Research Journal of Microbiology, 2011, 6: 25-40.

[68]Niehaus J U, Gross G G. A gallotannin degrading esterase from leaves of Pedunculate oak. Phytochemistry, 1997, 160:1555-1560.

[69]Noguchi A, Sasaki N, Nakao M, Fukami H, Takahashi S, Nishino T, Nakayama T. cDNA cloning of glycosyltransferases from Chinese wolfberry (Lycium barbarum L.) fruits and enzymatic synthesis of a catechin glucoside using a recombinant enzyme (UGT73A10). Journal of Molecular Catalysis B-Enzymatic, 2008, 55: 84-92.

[70]Shimoda K, Otsuka T, Morimoto Y, Hamada H, Hamada H. Glycosylation and malonylation of quercetin, epicatechin, and catechin by cultured plant cells. Chemistry Letters, 2007, 36: 1292-1293.

[71]Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul J M, Debeaujon I, Klein M. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin- accumulating cells of the seed coat. The Plant Cell, 2007, 19: 2023-2038.

[72]Zhao J, Huhman D, Shadle G, He X Z, Sumner L W, Tang Y, Dixon R A. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. The Plant Cell, 2011, 23: 1536-1555.

[73]Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant Journal, 2004, 37: 104-114.

[74]Baxter I R, Young J C, Armstrong G, Foster N, Bogenschutz N, Cordova T, Peer W A, Hazen S P, Murphy A S, Harper J F. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 2649-2654.

[75]Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005, 17: 2966-2980.

[76]Savitri Kumar N, Maduwantha B W W M, Kumar V, Nimal Punyasiri P A, Sarath B A I. Separation of proanthocyanidins isolated from tea leaves using high-speed counter-current chromatography. Journal of Chromatography A, 2009, 1216: 4295-4302.

[77]Lv H P, Lin Z, Tan J F, Guo L. Study on EGCG'' Me in tea. Food and Fermentation Industries, 2008, 34(1): 22-25.

[78]Winkel-Shirley B. The biosynthesis of flavonoids//E. Grotewold, ed. The Science of Flavonoids. New York: Springer Science & Business Media, 2006: 75-95.

[79]Kao Y H, Chang H H, Lee M J, Chen C L. Tea, obesity, and diabetes. Molecular Nutrition & Food Research, 2006, 50: 188-210.

[80]Wolfram S, Wang Y, Thielecke F. Anti-obesity effects of green tea: from bedside to bench. Molecular Nutrition & Food Research, 2006, 50: 176-187.
[1] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[2] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[3] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
[4] CUI YiFang,ZHENG Min,DING ShuangYang,ZHU Kui. Advances of Biosynthesis and Toxicity of Cereulide Produced by Emetic Bacillus cereus [J]. Scientia Agricultura Sinica, 2021, 54(12): 2666-2674.
[5] GUAN LiJun,XUE Yun,DING WenWen,ZHAO ZhanQin. Advances in Mechanisms of Biosynthesis and Regulation of Pasteurella multocida Capsule [J]. Scientia Agricultura Sinica, 2020, 53(3): 658-668.
[6] YU AiLi,ZHAO JinFeng,CHENG Kai,WANG ZhenHua,ZHANG Peng,LIU Xin,TIAN Gang,ZHAO TaiCun,WANG YuWen. Screening and Analysis of Key Metabolic Pathways in Foxtail Millet During Different Water Uptake Phases of Germination [J]. Scientia Agricultura Sinica, 2020, 53(15): 3005-3019.
[7] ZHANG Bin,LI Meng,LIU Jing,WANG JunJie,HOU SiYu,LI HongYing,HAN YuanHuai. Expression Analysis of the Chlorophyll Biosynthesis Structural Genes in Green and White Foxtail Millet [Setaria italica (L.) Beauv] [J]. Scientia Agricultura Sinica, 2020, 53(12): 2331-2339.
[8] XIAO LuoDan, TANG Lei, WANG WeiDong, GAO YueFang, HUANG YiFan, MENG Yang, YANG YaJun, XIAO Bin. Cloning and Functional Analysis of CsWRKYIIcs Transcription Factors in Tea Plant [J]. Scientia Agricultura Sinica, 2020, 53(12): 2460-2476.
[9] HAO BaoCheng, SONG XiangDong, GAO Yan, WANG XueHong, LIU Yu, LI YuanXi, LIANG Yan, CHEN KeYuan, HU YuYao, XING XiaoYong, HU YongHao, LIANG JianPing. Mutagenesis and Screening of Endophytic Fungus Alternaria Section Undifilum oxytropis Producing Swainsonine from Locoweed [J]. Scientia Agricultura Sinica, 2019, 52(15): 2716-2728.
[10] TANG Bin, ZHANG Lu, XIONG XuPing, WANG HuiJuan, WANG ShiGui . Advances in Trehalose Metabolism and Its Regulation of Insect Chitin Synthesis [J]. Scientia Agricultura Sinica, 2018, 51(4): 697-707.
[11] XU Dong,WANG Ling,CONG ShengBo,WANG JinTao,LI WenJing,WAN Peng. Cloning, Sequence Analysis and Expression of Pheromone Biosynthesis Activating Neuropeptide (PBAN) Gene in Different Development Stages of Pectinophora gossypiella [J]. Scientia Agricultura Sinica, 2018, 51(23): 4449-4458.
[12] DAI Si-lan, HONG Yan. Molecular Breeding for Flower Colors Modification on Ornamental Plants Based on the Mechanism of Anthocyanins Biosynthesis and Coloration [J]. Scientia Agricultura Sinica, 2016, 49(3): 529-542.
[13] ZENG You-ling, YANG Rui-rui. Biological Characteristics of Plant MicroRNAs and Actions in Environmental Stresses [J]. Scientia Agricultura Sinica, 2016, 49(19): 3671-3682.
[14] BO Xiao-pei1, WANG Meng-xin1, CUI Lin1, WANG Jin-he2, HAN Bao-yu1. Evaluation on Correlations of Three Kinds of Osmoregulation Substances in Tea Fresh Leaves with Low Temperature During Winter and Spring Respectively and Their Difference Among Cultivars [J]. Scientia Agricultura Sinica, 2016, 49(19): 3807-3817.
[15] GUO Guang-yan, BAI Feng, LIU Wei, BI Cai-li. Advances in Research of the Regulation of Transcription Factors of Lignin Biosynthesis [J]. Scientia Agricultura Sinica, 2015, 48(7): 1277-1287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!