Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (3): 658-668.doi: 10.3864/j.issn.0578-1752.2020.03.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Advances in Mechanisms of Biosynthesis and Regulation of Pasteurella multocida Capsule

GUAN LiJun1,XUE Yun1,DING WenWen1,ZHAO ZhanQin1,2()   

  1. 1 Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan
    2 College of Animal Science and Technology, Henan University of Science and Technology/ Key-Disciplines Laboratory of Safety of Environment and Animal Product, Luoyang 471003, Henan
  • Received:2018-09-03 Accepted:2019-11-05 Online:2020-02-01 Published:2020-02-13
  • Contact: ZhanQin ZHAO E-mail:zhaozhanqin@126.com

Abstract:

Pasteurella multocida can be widely infected with a variety of animals, causing hemorrhagic septicemia or infectious pneumonia. P. multocida possess a viscous capsular polysaccharide on the cell surface, which is a critical structural component and virulence factor, and plays an important role in the interaction between bacteria and the host, promoting the adhesion of bacteria to the host surface and enhancing the virulence of the bacteria. The molecular structure of the P. multocida capsule is similar to that of vertebrate glycosaminoglycan, which is polymerized by repeated disaccharide units to form a linear polysaccharide chain, which is an important immunological material basis for molecular mimicry, resistance to phagocytosis, and immune evasion during the infection of the host. In recent years, a series of important research advances have been made in the biosynthesis and regulation mechanism aspects of P. multocida capsule, providing a certain basic knowledge for the molecular pathogenesis of P. multocida capsule, and supplying a theoretical basis for the development of the capsular polysaccharide vaccine of P. multocida. This paper systematically illuminates the biosynthesis and expression regulation mechanisms of P. multocida capsule, including the serotyping of the capsule, the composition and structure of the capsular polysaccharide, the biosynthesis gene cluster and function of the capsule, the molecular synthesis mechanism of capsular polysaccharide, the expression regulation mechanism of capsular biosynthesis gene cluster, a total of five aspects. According to the capsular antigen, P. multocida is divided into five capsular serogroups of A, B, D, E, and F. The type A capsule GAG component is hyaluronic acid; the type D is heparosan; the type F is chondroitin, which is repeatedly composed of its corresponding disaccharide unit [β-GlcUA/β-GlcNAc], [β-GlcUA/α-GlcNAc], [β-GlcUA/β-GalNAc], respectively; the type B capsular polysaccharide is composed of arabinose, mannose and galactose in a certain structural form, and the composition and chemical structure of type E capsular polysaccharide are uncertain. Genes related to the biosynthesis of A, B, D, E and F capsules of P. multocida exist in the form of gene clusters and are divided into three distinct functional regions, R1, R2 and R3; the R1 region is responsible for transporting the capsular polysaccharide, the R2 region is responsible for the activation of the monosaccharide and the assembly of the capsular polysaccharide, and the R3 region is responsible for the modification of capsular polysaccharide (phospholipid replacement); according to the structure and the number of genes of the R2 region, the biosynthetic gene clusters of the five capsules can be divided into two categories: type A, D and F are Class I, and R2 contains 4 genes; types B and E are Class II, and R2 contains 9 genes, and using the specific gene in the R2 region to design primers, the capsular serotype of P. multocida can be rapidly identified by PCR. The capsular GAG of P. multocida is synthesized in the cytoplasm, and then exported to the cell surface via the ABC transporter formed by the protein encoded by the R1 region, and tightly bound to the cell surface by covalent attachment to the phospholipid; during the biosynthesis of the P. multocida capsular GAG, the glycosyltransferase gene located in the R2 region determines the type of activated monosaccharide and the type of capsular polysaccharide after assembly. In the biosynthetic gene cluster of the P. multocida capsule, the R1 and R2 regions form an operon with the same transcriptional direction, while the R3 transcription direction is opposite, and the promoter regions of both are located on the DNA sequence between the R2 and R3 regions; the transcriptional process of the P. multocida capsular biosynthesis gene cluster is positive regulated by the Fis protein, and the translation process is mainly positive regulated by Hfq protein.

Key words: Pasteurella multocida, capsule, glycosaminoglycan, biosynthesis, expression regulation

Table 1

Biosynthesis gene clusters and protein-coding function of class I capsule"

功能区
Region
开放阅读框(ORF) A型/D型/F型编码的蛋白质
Protein encoded by type A/D/F
功能
Function
A型
Type A
D型
Type B
F型
Type D
R1 hexA hexA hexA HexA ATP结合蛋白 ATP-binding protein
hexB hexB hexB HexB 内膜蛋白 Inner membrane protein
hexC hexC hexC HexC 具有周质结构域的内膜蛋白
Inner membrane protein with a periplasmic domain
hexD hexD hexD HexD 外膜蛋白(脂蛋白) Outer membrane protein (lipoprotein)
R2 hyaB dcbB fcbB HyaB/DcbB/FcbB 糖基转移酶 Glycosyltransferase
hyaC dcbC fcbC HyaC/DcbC/FcbC UDP-葡萄糖脱氢酶,催化UDP-葡萄糖转化为UDP-葡糖醛酸
UDP-glucose dehydrogenase, catalyzing the conversion of UDP-glucose to UDP-glucuronic acid
hyaD dcbF fcbD HyaD/DcbF/FcbD 透明质酸合成酶/肝素合成酶/软骨素合成酶 PmHAS/PmHS/PmCS
hyaE dcbE fcbE HyaE/ DcbE / FcbE 起始酶,将重复单元的第一个残基转移至
Poly-KDO linker Initiates enzyme, which transfers from the first residue of the repeat-unit to the poly-KDO linker
R3 phyA phyA phyA PhyA β-KDO糖基转移酶 β-Kdo glycosyltransferase
phyB phyB phyB PhyB β-KDO糖基转移酶 β-Kdo glycosyltransferase

Table 2

Biosynthesis gene clusters and protein-coding function of class II capsule"

功能区
Region
开放阅读框(ORF) B型/E型编码的蛋白质
Protein encoded by type B/E
功能
Function
B型
Type B
E型
Type F
R1 cexA cexA CexA ATP结合蛋白 ATP-binding protein
cexB cexB CexB 内膜蛋白 Inner membrane protein
cexC cexC CexC 具有周质结构域的内膜蛋白 Inner membrane protein with a periplasmic domain
cexD cexD CexD 外膜蛋白 Outer membrane protein
R2 bcbA ecbA BcbA/EcbA UDP-N-乙酰葡糖胺2-差向异构酶 UDP-N-acetylglucosamine 2-epimerase
bcbB ecbB BcbB/EcbB UDP-N-乙酰-D-甘露糖胺糖醛酸脱氢酶
UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase
bcbC ecbK BcbC/EcbK 假定的糖基转移酶,可能参与活化单糖的聚合
Putative glycosyltransferase, which likely involved in polymerization of the activated sugar
bcbDEFGI ecbDEFGI BcbDEFGI/EcbDEFGI 未知 Unknown
bcbH ecbJ BcbH/EcbJ 未知,是B型或E型的独有基因 Unknown, unique to serogroup B or E
R3 lipA lipA LipA 参与多糖的磷脂替换 Involved in phospholipid substitution of GAG
lipB lipB LipB 参与多糖的磷脂替换 Involved in phospholipid substitution of GAG

Fig. 1

Molecular biosynthesis pathways of P. multocida capsule"

Fig. 2

Transcriptional regulatory sequences of the intergenic region between the R2 and R3 of the capsular biosynthesis loci in type A P. multocida"

[1] ZEIDAN A A, POULSEN V K, JANZEN T, BULDO P, DERKX P M F, OREGAARD G, NEVES A R. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiology Reviews, 2017,41(supp_1):S168-S200.
[2] LISTON S D, MCMAHON S A, LE BAS A, SUITS M D L, NAISMITH J H, WHITFIELD C. Periplasmic depolymerase provides insight into ABC transporter-dependent secretion of bacterial capsular polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(21):E4870-E4879.
[3] CARTER G R, BIGLAND C H . Dissociation and virulence in strains of Pasteurella multocida isolated from a variety of lesions. Canadian Journal of Comparative Medicine and Veterinary Science, 1953,17(17):473-479.
[4] 王楷宬, 陆承平, 范伟兴 . 细菌荚膜多糖. 微生物学报, 2011,51(12):1578-1584.
WANG K C, LU C P, FAN W X . Bacterial capsular polysaccharide. Acta Microbiologica Sinica, 2011,51(12):1578-1584. (in Chinese)
[5] KHAMESIPOUR F, MOMTAZ H, MAMOREH MA . Occurrence of virulence factors and antimicrobial resistance in Pasteurella multocida strains isolated from slaughter cattle in Iran. Frontiers in Microbiology, 2014,5:536.
[6] FERNANDEZ-ROJAS M A, VACA S, REYES-LOPEZ M, DE LA GARZA M, AGUILAR-ROMERO F, ZENTENO E, SORIANO- VARGAS E, NEGRETE-ABASCAL E . Outer membrane vesicles of Pasteurella multocida contain virulence factors. MicrobiologyOpen, 2014,3(5):711-717.
[7] AHMAD T A, RAMMAH S S, SHEWEITA S A, HAROUN M, EI-SAYED L H. Development of immunization trials against Pasteurella multocida. Vaccine, 2014,32(8):909-917.
[8] LITSCHKO C, OLDRINI D, BUDDE I, BERGER M, MEENS J, GERARDY-SCHAHN R, BERTI F, SCHUBERT M, FIEBIG T . A new family of capsule polymerases generates teichoic acid-like capsule polymers in Gram-negative pathogens. MBio, 2018,9(3):e00641-18.
[9] 姜鹏 . Vibrio sp. QY101胞外多糖的分离纯化及抗细菌生物被膜活性研究[D]. 中国海洋大学, 2011.
JIANG P . The studies on isolation, purification and antlbiofilm activities of the exopolysaccharide from Vibrio sp. QY 101[D]. Ocean University of China, 2011. ( in Chinese)
[10] 顾宏伟, 陆承平 . 兔多杀性巴氏杆菌铁调节外膜蛋白的小鼠免疫效果分析. 中国农业科学, 2007,40(5):1073-1078.
GU H W, LU C P . Evaluation of the immunization of iron-regulated outer membrane proteins (iromps) of leporid Pasteurella multocida in mice model. Scientia Agricultura Sinica, 2007,40(5):1073-1078. (in Chinese)
[11] KATECHAKIS N, MARAKI S, DRAMITINOU I, MAROLACHAKI E, KOUTLA C, IOANNIDOU E . An unusual case of Pasteurella multocida bacteremic meningitis. Journal of Infection and Public Health, 2019,12(1):95-96.
[12] SUDARYATMA P E, NAKAMURA K, MEKATA H, SEKIGUCHI S, KUBO M, KOBAYASHI I, SUBANGKIT M, GOTO Y, OKABAYASHI T . Bovine respiratory syncytial virus infection enhances Pasteurella multocida adherence on respiratory epithelial cells. Veterinary Microbiology, 2018,220:33-38.
[13] TUN A E, BENEDICENTI L, GALBAN E M . Pasteurella multocida meningoencephalomyelitis in a dog secondary to severe periodontal disease. Clinical Case Reports, 2018,6(6):1137-1141.
[14] PAK S, VALENCIA D, DECKER J, VALENCIA V, ASKAROGLU Y . Pasteurella multocida pneumonia in an immunocompetent patient: case report and systematic review of literature. Lung India Official Organ of Indian Chest Society, 2018,35(3):237.
[15] CARTER G R . The type specific capsular antigen of Pasteurella multocida. Canadian Journal of Medical Science, 1952,30(1):48-53.
[16] RIMLER R B, RHOADES K R . Serogroup F. a new capsule serogroup of Pasteurella multocida. Journal of Clinical Microbiology, 1987,25(4):615-618.
[17] PANDITt K K, SMITH J E . Capsular hyaluronic acid in Pasteurella multocida type A and its counterpart in type D. Research in Veterinary Science, 1993,54(1):20-24.
[18] DEANGELIS P L, GUNAY N S, TOIDA T, MAO W J, LINHARDT R J . Identification of the capsular polysaccharides of type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively. Carbohydrate Research, 2002,337(17):1547-1552.
[19] MUNIANDY J B, MUKKUR T . Virulence, purification, structure and protective properties of the putative capsular polysaccharide of Pasteurella multocida type 6:B. Aciar Proceedings, 1993: 47-54.
[20] WILSON B A, HO M . Pasteurella multocida: from zoonosis to cellular microbiology. Clinical Microbiology Reviews, 2013,26(3):631-655.
[21] WILKIE I W, HARPER M, BOYCE J D, ADLER B . Pasteurella multocida: diseases and pathogenesis. Springer Berlin Heidelberg, 2012,361(9):1-22.
[22] ASKI H S, TABATABAEI M . Occurrence of virulence-associated genes in Pasteurella multocida isolates obtained from different hosts. Microb Pathog, 2016,96:52-57.
[23] 赵战勤, 刘倩玉, 席晓剑, 王乐, 邓雯, 薛云, 张春杰 . 猪源A型和D型多杀性巴氏杆菌强毒菌株的生物学特性比较研究. 中国预防兽医学报, 2016,38(5):366-370.
ZHAO Z Q, LIU Q Y, XI X J, WANG L, DENG W, XUE Y, ZHANG C J . A comparative study on biological characterization of Pasteurella multocida serogroups A and D isolates from swine in China. Chinese Journal of Preventive Veterinary Medicine, 2016,38(5):366-370. (in Chinese)
[24] 赵战勤, 乔鹏芸, 刘倩玉, 薛云, 丁轲 . 多杀性巴氏杆菌的分型及其灭活疫苗研究进展. 中国预防兽医学报, 2017,39(7):600-604.
ZHAO Z Q, QIAO P Y, LIU Q Y, XUE Y, DING K . Advances in the classification and inactivated vaccine of Pasteurella multocida. Chinese Journal of Preventive Veterinary Medicine, 2017,39(7):600-604. (in Chinese)
[25] 席晓剑, 赵战勤, 薛云, 龙塔, 王乐, 刘会胜 . 猪源多杀性巴氏杆菌的病原流行病学及其毒力特性. 中国兽医学报, 2015,35(8):1205-1210.
XI X J, ZHAO Z Q, XUE Y, LONG T, WANG L, LIU H S . Prevalence and virulence of Pasteurella multocida in pig farms in central China. Chinese Journal of Veterinary Science, 2015,35(8):1205-1210. (in Chinese)
[26] LIU H S, ZHAO Z Q, XI X J, XUE Q, LONG T, XUE Y . Occurrence of Pasteurella multocida among pigs with respiratory disease in China between 2011 and 2015. Irish Veterinary Journal, 2017,70:2.
[27] ROSNER H, GRIMMECKE H D, KNIREL Y A, SHASHKOV A S . Hyaluronic acid and a (1→4)-β-d-xylan, extracellular polysaccharides of Pasteurella multocida (Carter type A) strain 880. Carbohydrate Research, 1992,223(4):329.
[28] DEANGELIS P L . Hyaluronan synthases: fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cellular and Molecular Life Sciences Cmis, 1999,56(7/8):670-682.
[29] DEANGELIS P L . Microbial glycosaminoglycan glycosyltransferases. Glycobiology, 2002,12(1):9R-16R.
[30] TOWNLEY R A, BULOW H E . Deciphering functional glycosaminoglycan motifs in development. Current Opinion in Structural Biology, 2018,50:144-154.
[31] DEANGELIS P L . Evolution of glycosaminoglycans and their glycosyltransferases: implications for the extracellular matrices of animals and the capsules of pathogenic bacteria. Anatomical Record- advances in Integrative Anatomy and Evolutionary Biology, 2010,268(3):317-326.
[32] BOYCE J D, CHUNG J Y, ADLER B . Genetic organisation of the capsule biosynthetic locus of Pasteurella multocida M1404 (B:2). Veterinary Microbiology, 2000,72:121-134.
[33] CHUNG J Y, ZHANG Y, ADLER B . The capsule biosynthetic locus of Pasteurella multocida A:1. Fems Microbiology Letters, 1998,166(2):289-296.
[34] BOYCE J D, CHUNG J Y, ADLER B . Pasteurella multocida capsule: composition, function and genetics. Journal of Biotechnology, 2000,83(1):153-160.
[35] LIU W, YANG M, XU Z, ZHENG H, LIANG W, ZHOU R, WU B, CHEN H . Complete genome sequence of Pasteurella multocida HN06, a toxigenic strain of serogroup D. Journal of Bacteriology, 2012,194(12):3292-3293.
[36] TOWNSEND K M, BOYCE J D, CHUNG J Y, FROST A J, ADLER B . Genetic organization of Pasteurella multocida cap loci and development of a multiplex capsular PCR typing system. Journal of Clinical Microbiology, 2001,39(3):924-929.
[37] ROBERTS I S . The biochemistry and genetics of capsular polysaccharide production in bacteria. Annual Review of Microbiology, 1996,50:285-315.
[38] DEANGELIS P L . Enzymological characterization of the Pasteurella multocida hyaluronic acid synthase. Biochemistry, 1996,35(30):9768-9771.
[39] DEANGELIS P L, WHITE C L . Identification and molecular cloning of a heparosan synthase from Pasteurella multocida type D. Journal of Biological Chemistry, 2002,277(9):7209-7213.
[40] DEANGELIS P L, PADGETT-MCCUE A J . Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. Journal of Biological Chemistry, 2000,275(31):24124-24129.
[41] WILLIS L M, STUPAK J, RICHARDS M R, LOWARY T L, LI J, WHITFIELD C . Conserved glycolipid termini in capsular polysaccharides synthesized by ATP-binding cassette transporter-dependent pathways in Gram-negative pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(19):7868-7873.
[42] WILLIS L M, WHITFIELD C . KpsC and KpsS are retaining 3-deoxy-D-manno-oct-2-uloso-nic acid (Kdo) transferases involved in synthesis of bacterial capsules. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(51):20753-20758.
[43] OVCHINNIKOVA O G, MALLETTE E, KOIZUMI A, LOWARY T L, KIMBER M S, WHITFIELD C . Bacterial beta-Kdo glycosyltransferases represent a new glycosyltransferase family (GT99). Proceedings of the National Academy of Sciences of the United States of America, 2016,113(22):E3120-3129.
[44] DEANGELIS P L, WHITE C L . Identification of a distinct, cryptic heparosan synthase from Pasteurella multocida types A, D, and F. Journal of Bacteriology, 2004,186(24):8529-8532.
[45] DEANGELIS P L . Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase. Journal of Biological Chemistry, 1999,274(37):26557-26562.
[46] JING W, DEANGELIS P L . Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide. Glycobiology, 2000,10(9):883-889.
[47] KANE T A, WHITE C L, DEANGELIS P L . Functional characterization of PmHS1, a Pasteurella multocida heparosan synthase. Journal of Biological Chemistry, 2006,281(44):33192-33197.
[48] LINHARDT R J, DORDICK J S, DEANGELIS P L, LIU J . Enzymatic synthesis of glycosaminoglycan heparin. Seminars in Thrombosis and Hemostasis, 2007,33(5):453-465.
[49] TRACY B S, AVCI F Y, LINHARDT R J, DeAngelis P L . Acceptor specificity of the Pasteurella hyaluronan and chondroitin synthases and production of chimeric glycosaminoglycans. Journal of Biological Chemistry, 2007,282(1):337-344.
[50] WILLIS E . Structure and biosynthesis of capsular polysaccharides synthesized via ABC transporter-dependent processes. Carbohydrate Research, 2013,378:35-44.
[51] STEEN J A, STEEN J A, PAUL H, TORSTEN S, IAN W, MARINA H, BEN A, BOYCE J D . Fis is essential for capsule production in Pasteurella multocida and regulates expression of other important virulence factors. PLoS Pathogens, 2010,6(2):e1000750.
[52] DORMAN C J, DEIGHAN P . Regulation of gene expression by histone-like proteins in bacteria. Current Opinion in Genetics and Development, 2003,13(2):179-184.
[53] BAGCHI A . Structural characterization of Fis - a transcriptional regulator from pathogenic Pasteurella multocida essential for expression of virulence factors. Gene, 2015,554(2):249-253.
[54] WATT J M, SWIATLO E, WADE M M, CHAMPLIN F R . Regulation of capsule biosynthesis in serotype A strains of Pasteurella multocida. Fems Microbiology Letters, 2003,225(1):9-14.
[55] PENG Z, LIANG W, LIU W, WU B, TANG B, TAN C, ZHOU R, CHEN H . Genomic characterization of Pasteurella multocida HB01, a serotype A bovine isolate from China. Gene, 2016,581(1):85-93.
[56] MEGROZ M, KLEIFELE O, WRIGHT A, POWELL D, HARRISON P, ADLER B, HARPER M, BOYCE J D . The RNA-binding chaperone Hfq is an important global regulator of gene expression in Pasteurella multocida and plays a crucial role in production of a number of virulence factors, including hyaluronic acid capsule. Infection and Immunity, 2016,84(5):1361-1370.
[57] CARMICHAEL G G . Isolation of bacterial and phage proteins by homopolymer RNA-cellulose chromatography. Journal of Biological Chemistry, 1975,250(15):6160-6167.
[58] FELICIANO J R, GRILO A M, GUERREIRO S I, Sousa S A, Leitao J H . Hfq: a multifaceted RNA chaperone involved in virulence. Future Microbiology, 2016,11(1):137-151.
[59] GULLIVER E L, WRIGHT A, LUCAS D D, MEGROZ M, KLEIFELD O, SCHITTENHELM R B, POWELL D R, SEEMANN T, BULITTA J B, HARPER M, BOYCE J D . Determination of the small RNA GcvB regulon in the Gram-negative bacterial pathogen Pasteurella multocida and identification of the GcvB seed binding region. RNA, 2018,24(5):704-720.
[60] FROHLICH K S, VOGEL J . Activation of gene expression by small RNA. Current Opinion in Microbiology, 2009,12(6):674-682.
[61] ZHOU G, GROTH T . Host responses to biomaterials and anti- inflammatory design-a brief review. Macromolecular Bioscience, 2018: e1800112.
[62] BAT-ERDENE U, QUAN E, CHAN K, LEE B M, MATOOK W, LEE K Y, ROSALES J L . Neutrophil TLR4 and PKR are targets of breast cancer cell glycosaminoglycans and effectors of glycosaminoglycan- induced APRIL secretion. Oncogenesis, 2018,7(6):45.
[63] GOVINDARAJU P, TODD L, SHETYE S, MONSLOW J, PURE E. , CD44-dependentinflammation fibrogenesis,collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biology, 2019, 75-76:314-330.
[64] BOUGATEF H, KRICHEN F, CAPITANI F, AMOR I B, MACCARI F, MANTOVANI , V, GALEOTTI F, VOLPI N, BOUGATEF A, SILA A . Chondroitin sulfate or dermatan sulfate from corb (Sciaena umbra) skin: purification, structural analysis and anticoagulant effect. Carbohydrate Polymers, 2018,196:272-278.
[65] JIAN W H, WANG H C, KUAN C H, Chen M H, Wu H C, Sun J S, Wang T W . Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration. Biomaterials, 2018,174:17-30.
[66] FINLAND M, SUTLIFF W D . Specific antibody response of human subjects to intracutaneous injection of pneumococcus products. The Journal of Experimental Medicine, 1932,55(6):853-865.
[67] HOAGLAND C L, BEESON P B, GOEBEL W F . The capsular polysaccharide of the type XIV pneumococcus and its relationship to the specific substances of human blood. Science, 1938,88(2281):261-263.
[68] ROBBINS J B, AUSTRIAN R, LEE C J, RASTOGI S C, SCHIFFMAN G, HENRICHSEN J, MÄKELÄ P H, BROOME C V, FACKLAM R R, TIESJEMA R H . Considerations for formulating the second-generation pneumococcal capsular polysaccharide vaccine with emphasis on the cross-reactive types within groups. The Journal of Infectious Disease, 1983,148(6):1136-1159.
[69] HARRISON L H . Prospects for vaccine prevention of meningococcal infection. Clinical Microbiology Reviews, 2006,19(1):142-164.
[70] ZAREI A E, ALMEHDAR H A, REDWAN E M . Hib vaccines: past, present, and future perspectives. Journal of Immunology Research, 2016,2016:7203587.
[71] CILLÓNIZ C, AMARO R, TORRES A . Pneumococcal vaccination. Current Opinion in Infectious Diseases, 2016,29(2):187-196.
[72] HARRISON L H, MOHAN N, KIRKPATRICK P . Meningococcal group A, C, Y and W-135 conjugate vaccine. Nature Reviews Drug Discovery, 2010,9(6):429-430.
[73] 刘秀丽, 郝永清, 郭宇 . 奶牛乳房炎金黄色葡萄球菌荚膜多糖研究概况. 动物医学进展, 2011,32(3):117-120.
LIU X L, HAO Y Q, GUO Y . Progress on capsular polysaccharides of staphylococcus aureus isolated from cow mastitis. Progress in Veterinary Medicine, 2011,32(3):117-120. (in Chinese)
[74] 赫娜, 王长法, 杨宏军, 何洪彬, 杨少华, 王立群, 高运东, 仲跻峰 . 牛源金黄色葡萄球菌突变株的筛选、鉴定及其免疫原性的研究. 中国农业科学, 2010,43(10):2174-2181.
HE N, WANG C F, YANG H J, HE H B, YANG S H, WANG L Q, GAO Y D, ZHONG J F . Screening an attenuated strain and immunogenicity in mice of a bovine mastitis staphylococcus aureus mutant. Scientia Agricultura Sinica, 2010,43(10):2174-2181. (in Chinese)
[75] FATTOM A, FULLER S, PROPST M, WINSTON S, MUENZ L, HE D, NASO R, HORWITH G . Safety and immunogenicity of a booster dose of Staphylococcus aureus types 5 and 8 capsular polysaccharide conjugate vaccine (StaphVAX) in hemodialysis patients. Vaccine, 2004,23(5):656-663.
[76] 张哲 . 奶牛乳房炎金黄色葡萄球菌荚膜多糖蛋白结合疫苗的研究[D]. 甘肃农业大学, 2017.
ZHANG Z . Study on protein conjugate polysaccharide vaccine of Staphylococcus aureus for bovine mastitis[D]. Gansu Agricultural University, 2017. ( in Chinese)
[77] LATTAR S M, NOTO LLANA M, DENOËL P, GERMAIN S, BUZZOLA F R, LEE J C, SORDELLI D O . Protein antigens increase the protective efficacy of a capsule-based vaccine against Staphylococcus aureus in a rat model of osteomyelitis. Infection and Immunity, 2014,82(1):83-91.
[78] CRESS B F, ENGLAENDER J A, HE W, KASPER D, LINHARDT R J, KOFFAS M A . Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. Fems Microbiology Reviews, 2014,38(4):660-697.
[79] PRUIMBOOM I M, RIMLER R B, ACKERMANN M R . Enhanced adhesion of Pasteurella multocida to cultured turkey peripheral blood monocytes. Infection and Immunity, 1999,67(3):1292-1296.
[1] CHEN Ge,CAO LiDong,XU ChunLi,ZHAO PengYue,CAO Chong,LI FengMin,HUANG QiLiang. Performance Study of Prothioconazole Microcapsules Prepared by Solvent Evaporation Method [J]. Scientia Agricultura Sinica, 2021, 54(4): 754-767.
[2] CUI YiFang,ZHENG Min,DING ShuangYang,ZHU Kui. Advances of Biosynthesis and Toxicity of Cereulide Produced by Emetic Bacillus cereus [J]. Scientia Agricultura Sinica, 2021, 54(12): 2666-2674.
[3] ZHANG Wen,MENG ShuJun,WANG QiYue,WAN Jiong,MA ShuanHong,LIN Yuan,DING Dong,TANG JiHua. Transcriptome Analysis of Maize pTAC2 Effects on Chlorophyll Synthesis in Seedling Leaves [J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889.
[4] YU AiLi,ZHAO JinFeng,CHENG Kai,WANG ZhenHua,ZHANG Peng,LIU Xin,TIAN Gang,ZHAO TaiCun,WANG YuWen. Screening and Analysis of Key Metabolic Pathways in Foxtail Millet During Different Water Uptake Phases of Germination [J]. Scientia Agricultura Sinica, 2020, 53(15): 3005-3019.
[5] ZHANG Bin,LI Meng,LIU Jing,WANG JunJie,HOU SiYu,LI HongYing,HAN YuanHuai. Expression Analysis of the Chlorophyll Biosynthesis Structural Genes in Green and White Foxtail Millet [Setaria italica (L.) Beauv] [J]. Scientia Agricultura Sinica, 2020, 53(12): 2331-2339.
[6] XiaoDong LI,YiShun SHANG,ShiGe LI,GuangJi CHEN,ChengJiang PEI,Fang SUN,XianQin XIONG. The Mechanism of Ectopic Expression of Brassica juncea Multidrug and Toxic Compound Extrusion (BjMATE) to Enhance the Resistance to Acid and Aluminum Stress in Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(1): 18-28.
[7] LiSong SHI,Yuan GAO,DongHua LI,WenJuan YANG,Rong ZHOU,XiuRong ZHANG,YanXin ZHANG. Study on the Method for Identification Sesame Capsule Dehiscence Resistance and Evaluation of Capsule Dehiscence Resistance of the Core Collection [J]. Scientia Agricultura Sinica, 2019, 52(20): 3520-3532.
[8] HAO BaoCheng, SONG XiangDong, GAO Yan, WANG XueHong, LIU Yu, LI YuanXi, LIANG Yan, CHEN KeYuan, HU YuYao, XING XiaoYong, HU YongHao, LIANG JianPing. Mutagenesis and Screening of Endophytic Fungus Alternaria Section Undifilum oxytropis Producing Swainsonine from Locoweed [J]. Scientia Agricultura Sinica, 2019, 52(15): 2716-2728.
[9] TANG Bin, ZHANG Lu, XIONG XuPing, WANG HuiJuan, WANG ShiGui . Advances in Trehalose Metabolism and Its Regulation of Insect Chitin Synthesis [J]. Scientia Agricultura Sinica, 2018, 51(4): 697-707.
[10] XU Dong,WANG Ling,CONG ShengBo,WANG JinTao,LI WenJing,WAN Peng. Cloning, Sequence Analysis and Expression of Pheromone Biosynthesis Activating Neuropeptide (PBAN) Gene in Different Development Stages of Pectinophora gossypiella [J]. Scientia Agricultura Sinica, 2018, 51(23): 4449-4458.
[11] LAN Yue, HU Yue, WANG Yan, Guo YanZhen, ZHAO HengKe, HE Lin, QIAN Kun. Preparation of Acetochlor Microcapsules by Interfacial Polymerization and the Environmental Behavior and Control Efficacy [J]. Scientia Agricultura Sinica, 2017, 50(14): 2739-2747.
[12] DAI Si-lan, HONG Yan. Molecular Breeding for Flower Colors Modification on Ornamental Plants Based on the Mechanism of Anthocyanins Biosynthesis and Coloration [J]. Scientia Agricultura Sinica, 2016, 49(3): 529-542.
[13] ZENG You-ling, YANG Rui-rui. Biological Characteristics of Plant MicroRNAs and Actions in Environmental Stresses [J]. Scientia Agricultura Sinica, 2016, 49(19): 3671-3682.
[14] GUO Guang-yan, BAI Feng, LIU Wei, BI Cai-li. Advances in Research of the Regulation of Transcription Factors of Lignin Biosynthesis [J]. Scientia Agricultura Sinica, 2015, 48(7): 1277-1287.
[15] JIA Hui, MENG Qing-jiang, LI Zhi-yong, GONG Xiao-dong, ZANG Jin-ping, HAO Zhi-min, CAO Zhi-yan, DONG Jin-gao. Localization of Melanin Biosynthesis Enzyme Genes in the Genome and Expression Pattern Analysis of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2015, 48(14): 2767-2776.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!