Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (23): 4449-4458.doi: 10.3864/j.issn.0578-1752.2018.23.005

• PLANT PROTECTION • Previous Articles     Next Articles

Cloning, Sequence Analysis and Expression of Pheromone Biosynthesis Activating Neuropeptide (PBAN) Gene in Different Development Stages of Pectinophora gossypiella

XU Dong(),WANG Ling,CONG ShengBo,WANG JinTao,LI WenJing,WAN Peng   

  1. Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture/Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan 430064
  • Received:2018-08-06 Accepted:2018-09-19 Online:2018-12-01 Published:2018-12-12

Abstract:

【Objective】The objective of this study is to clone the pheromone biosynthesis activating neuropeptide (PBAN) gene of pink bollworm (Pectinophora gossypiella), analyze its sequence characteristics, clarify its expression patterns in different developmental stages as well as correlation with mating behavior and cotton volatiles, which will provide a scientific basis for further revealing the biosynthesis and release mechanisms of sex pheromone in P. gossypiella.【Method】The full cDNA sequence of PgosPBAN was cloned by RACE technique. Gene splicing and amino acid sequence were analyzed by the software of DNAMAN 6.0, protein secondary structure prediction of PgosPBAN and bioinformatics information were predicted using Protparam and Chou & Fasman. The expression patterns of PgosPBAN in different developmental stages of P. gossypiella were detected and the effects of mating behavior and cotton volatiles on the expression level of PgosPBAN were analyzed using real-time quantitative PCR (qRT-PCR). 【Result】The full cDNA sequence of PgosPBAN (GenBank accession number: KY987647) is obtained, and the total length of cDNA is 1 461 bp. The open reading frame (ORF) is 618 bp, encoding 205 amino acid residues. The length of 5′-untranslated region (5′ UTR) and 3′-untranslated region (3′ UTR) is 121 and 722 bp, respectively. The amino acid sequence encoded by PgosPBAN contains five peptides, including diapause hormone homolog, α-SGNP, β-SGNP, PBAN and γ-SGNP, and a signal peptide of 23 amino acid residues at the N terminus. The predicted molecular mass and isoelectric point are 2.41 kD and 9.25, respectively. Homology and phylogenetic tree analysis showed that PgosPBAN and PBAN of 15 Lepidoptera insects were located in the same branch, and PgosPBAN had the closest relationship with Chilo suppressalis PBAN (GenBank accession number: ALM30314.1), suggesting that the two genes likely developed from a common ancestral gene. The expression of PgosPBAN was specific in different developmental stages, which was higher in adult stage, second in larval stage, and the lowest in pupal stage. PgosPBAN was expressed in both female and male adults, and the expression of PgosPBAN in male adults was significantly higher than that in female adults from the 1st-day to 5th-day old. The expression level of PgosPBAN in P. gossypiella at 1-3 days after mating was significantly higher than that in virgin moth. After exposed to cotton volatiles for 1-5 days, the expression level of PgosPBAN in male adults had no significant difference compared with the control, but the expression level of PgosPBAN at 1st, 8th day of female adults and 8th day of male adults was significantly lower than that in control. 【Conclusion】The sequence characteristics of nucleotides and amino acids of PgosPBAN were clarified, and the secondary structure characteristics of the protein were analyzed. According to the expression of PgosPBAN in different developmental stages of P. gossypiella and its relationship with mating behavior and the regulation of cotton volatiles, it is speculated that this gene is not only involved in the synthesis and release of female pheromone in P. gossypiella, it may also play an important role in regulating male pheromones and regulating growth and development.

Key words: pink bollworm (Pectinophora gossypiella), pheromone biosynthesis activating neuropeptide (PBAN), expression analysis, mating behavior, cotton volatiles

Table 1

The primers for PgosPBAN amplification"

引物名称 Primer name 引物序列 Primer sequence (5′-3′) 用途 Primer use
PgosPBAN-F CTBTGGTTCGGYCCYMGACTMGG cDNA克隆 cDNA cloning
PgosPBAN-R CATSGTBGKSCCBAGCCTKGGBGAGAAGT
3′ PgosPBAN-Outer CAAACCTACCTCCGTCTTCTT 3′端cDNA扩增 3′-cDNA end amplification
3′ PgosPBAN-Inner CGCCCTAAAATACTACTACGAC
5′ PgosPBAN-Outer GTCAGCTAACCTCCTTCCGAG 5′端cDNA扩增 5′-cDNA end amplification
5′ PgosPBAN-Inner CACTCTCGTATCGCTTCCTCT
PgosPBAN-O-F GCAACAGTAAATCGTAGAAACA 开放阅读框扩增 ORF amplification
PgosPBAN-O-R GATGAGCATAAACCAGCCAAT
PgosPBAN-Q-F GGCAAGCGTTCTTTCCATCC 实时荧光定量PCR
qRT-PCR
PgosPBAN-Q-R GCCTCGTCATCAGCCTGTG
ACS1 CACCGTGCCCATCTATGAAGG
ACR1 GACGATTTCCCTCTCAGCGGT

Fig. 1

Agarose gel electrophoresis of PCR product of the coding sequence of PgosPBAN"

Fig. 2

The phylogenetic analysis of PBAN protein from different species"

Fig. 3

The relative expression level of PgosPBAN in different developmental stages of P. gossypiella"

Fig. 4

The effect of mating on the expression level of PgosPBAN at adult stage of P. gossypiella"

Fig. 5

The effect of cotton volatile on the expression level of PgosPBAN at adult stage of P. gossypiella"

[1] 束春娥, 曹赤阳, 柏立新, 曹雁平, 孙洪武, 张永孝 . 棉红铃虫性信息素应用技术研究. 华东昆虫学报, 1995,4(2):106-112.
SHU C E, CAO C Y, BAI L X, CAO Y P, SUN H W, ZHANG Y X . Studies on applying gossyplure in controlling pink bollworm (Pectinophora gossypiella Saunders) on cotton. Entomological Journal of East China, 1995,4(2):106-112. (in Chinese)
[2] 段敏 . 性信息素在棉红铃虫防治中的应用. 中山大学研究生学刊自然科学版, 1995,16(2):72-78.
DUAN M . Sex pheromone for the control of Pectinophora gossypiella(Lepidoptera: Gelechiidae). Natural Science Journal of the Graduates, Sun Yat-Sen University, 1995,16(2):72-78. (in Chinese)
[3] COLLINS R D, CARDE R T . Heritable variation in pheromone response of the pink bollworm,Pectinophora gossypiell.(Lepidoptera: Gelechiidae). Journal of Chemical Ecology, 1989,15(12):2647-2659.
doi: 10.1007/BF01014723 pmid: 24271678
[4] NÄSSEL D R . Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones// Progress in Neurobiology. Elsevier Science Ltd., 2002,68:1-84.
doi: 10.1016/S0301-0082(02)00057-6 pmid: 12427481
[5] 鲁玉杰, 郭云峰 . PBAN/pyrokinin神经肽类及其基因的研究进展. 生物技术通报, 2008(增刊):53-58.
LU Y J, GUO Y F . Research advance in PBAN/pyrokinin neuropeptide and its gene.Biotechnology Bulletin, 2008(Suppl.):53-58. (in Chinese)
[6] 杨惠, 张金桐 . 德国小蠊聚集信息素的组分及含量测定. 寄生虫与医学昆虫学报, 2004,11(1):42-46.
doi: 10.3969/j.issn.1005-0507.2004.01.011
YANG H, ZHANG J T . Measurement of the compositions and contents of the aggregation pheromone from German cockroach, Blattella germanica. Acta Parasitologica et Medica Entomologica Sinica, 2004,11(1):42-46. (in Chinese)
doi: 10.3969/j.issn.1005-0507.2004.01.011
[7] RAFAELI A . Pheromone biosynthesis activating neuropeptide (PBAN): Regulatory role and mode of action. General and Comparative Endocrinology, 2009,162(1):69-78.
doi: 10.1016/j.ygcen.2008.04.004 pmid: 18495120
[8] ZHANG T Y, SUN J S, ZHANG L B, SHEN J L, XU W H . Cloning and expression of the cDNA encoding the FXPRL family of peptides and a functional analysis of their effect on breaking pupal diapause in Helicoverpa armigera. Journal of Insect Physiology, 2004,50(1):25-33.
doi: 10.1016/j.jinsphys.2003.09.006 pmid: 15037090
[9] XU W H, DENLINGER D L . Identification of a cDNA encoding DH, PBAN and other FXPRL neuropeptides from the tobacco hornworm, Manduca sexta, and expression associated with pupal diapause. Peptides, 2004,25(7):1099-1106.
[10] 徐春媛, 刘彦群, 鲁成, 向仲怀 . 中国野桑蚕性信息素合成激活肽(PBAN)基因的克隆及序列分析. 遗传学报, 2003,30(11):1034-1040.
XU C Y, LIU Y Q, LU C, XIANG Z H . Molecular cloning and sequence analysis of pheromone biosynthesis activating neuropeptide (PBAN) gene of Bombyx mandarina China. Acta Genetica Sinica, 2003,30(11):1034-1040. (in Chinese)
[11] 常菊花, 何月平 . 水稻螟虫神经肽PBAN及其受体序列的生物信息学分析. 应用昆虫学报, 2016,53(3):456-462.
CHANG J H, HE Y P . Bioinformatic analysis of PBAN and its receptor proteins in rice stem borers. Chinese Journal of Applied Entomology, 2016,53(3):456-462. (in Chinese)
[12] LEE D W, BOO K S . Molecular characterization of pheromone biosynthesis activating neuropeptide from the diamondback moth Plutella xylostell.(L.). Peptides., 2005,26(12):2404-2411.
doi: 10.1016/j.peptides.2005.04.016 pmid: 16005110
[13] JING T Z, WANG Z Y, QI F H, LIU K Y . Molecular characterization of diapause hormone and pheromone biosynthesis activating neuropeptide from the black-back prominent moth, Clostera anastomosi.( L.) (Lepidoptera: Notodontidae) Insect Biochemistry and Molecular Biology, 2007,37(12):1262-1271.
doi: 10.1016/j.ibmb.2007.07.012 pmid: 17967345
[14] CHOI M Y, ESTEP A, SANSCRAINATE N, BECNEL J , VANDER MEER R K. Identification and expression of PBAN/diapause hormone and GPCRs from Aedes aegypti. Molecular and Cellular Endocrinology., 2013,375(1/2):113-120.
[15] TSFADIA O, AZRIELLI A, FALACH L, ZADA A, ROELOFS W, RAFAELI A . Pheromone biosynthetic pathways: PBAN-regulated rate-limiting steps and differential expression of desaturase genes in moth species. Insect Biochemistry and Molecular Biology, 2008,38(5):552-567.
doi: 10.1016/j.ibmb.2008.01.005 pmid: 18405833
[16] TANG J D, CHARLTON R E, JURENKA R A, WOLF W A, PHELAN P L, SRENG L, ROELOFS W L . Regulation of pheromone biosynthesis by a brain hormone in two moth species . Proceedings of the National Academy of Science of the United States of America, 1989,86(6):1806-1810.
doi: 10.1073/pnas.86.6.1806 pmid: 16594018
[17] OZAWA R A, ANDO T, NAGASAWA H, KATAOKA H, SUZUKI A . Reduction of the acyl group: the critical step in bombykol biosynthesis that is regulated in vitro by the neuropeptide hormone in the pheromone gland of Bombyx mori. Bioscience, Biotechnology and Biochemistry, 1993,57(12):2144-2147.
doi: 10.1271/bbb.57.2144
[18] JURENKA R, RAFAELI A . Regulatory role of PBAN in sex pheromone biosynthesis of heliothine moths. Frontiers in Endocrinology, 2011, 2: Article 46.
doi: 10.3389/fendo.2011.00046 pmid: 3356091
[19] CHOI M Y, JURENKA R A . PBAN stimulation of pheromone biosynthesis by inducing calcium influx in pheromone glands of Helicoverpa zea. Journal of Insect Physiology, 2004,50:555-560.
doi: 10.1016/j.jinsphys.2004.04.001 pmid: 15183285
[20] 穆兰芳, 董双林, 刘慕兰, 邢光南 . 铃夜蛾属昆虫性信息素生物合成及内分泌调控. 昆虫知识, 2005,42(2):128-131.
doi: 10.3969/j.issn.0452-8255.2005.02.004
MU L F, DONG S L, LIU M L, XING G N . The endocrine regulation and biosynthesis of sex pheromones in some species of Helicovrepa. Chinese Bulletin of Entomology, 2005,42(2):128-131. (in Chinese)
doi: 10.3969/j.issn.0452-8255.2005.02.004
[21] RAFAELI A, ZAKHAROVA T, LAPSKER Z, JURENKA R A . The identification of an age- and female-specific putative PBAN membrane-receptor protein in pheromone glands of Helicoverpa armigera: possible up-regulation by juvenile hormone. Insect Biochemistry and Molecular Biology., 2003,33(3):371-380.
doi: 10.1016/S0965-1748(02)00264-3 pmid: 12609521
[22] RAFAELI A, GILEADI C . Down regulation of pheromone biosynthesis: Cellular mechanisms of pheromonostatic responses. Insect Biochemistry and Molecular Biology, 1996,26(8/9):797-807.
doi: 10.1016/S0965-1748(96)00029-X
[23] 王姗姗 . RNAi介导的甜菜夜蛾性信息素合成激活肽及其受体基因的功能鉴定.[D]. 北京: 中国农业科学院, 2015.
WANG S S . Function identification of pheromone biosynthesis- activating neuropeptide and it’s receptor by using RNAi, in Spodoptera exigua (Hübner)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. ( in Chinese)
[24] ZHAO J Y, XU W H, KANG L . Functional analysis of the SGNP I in the pupal diapause of the oriental tobacco budworm, Helicoverpa assult.(Lepidoptera: Noctuidae). Regulatory Peptides, 2004,118(1/2):25-31.
[25] MATSUMOTO S, KITAMURA A, NAGASAWA H, KATAOKA H, ORIKASA C, MITSUI T, SUZUKI A . Functional diversity of a neurohormone produced by the suboesophageal ganglion: molecular identity of melanization and reddish colouration hormone and pheromone biosynthesis activating neuropeptide. Journal of Insect Physiology, 1990,36(6):427-432.
doi: 10.1016/0022-1910(90)90060-S
[26] 徐丽华, 刘春雷, 常玉梅, 梁利群, 刘金亮, 高国强, 韩启霞 . 双标准曲线相对定量PCR试验原理与方法. 生物技术通报, 2011(1):70-75.
XU L H, LIU C L, CHANG Y M, LIANG L Q, LIU J L, GAO G Q, HAN Q X . Theory and method of double-standard curves method of relative quantification PCR.Biotechnology Bulletin, 2011(1):70-75. (in Chinese)
[27] RAINA A K, JAFFE H, KEMPE T G, KEIM P, BLACHER R W, FALES H M, RILEY C T, KLUN J A, RIDGWAY R L, HAYES D K . Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science, 1989,244(4906):796-798.
doi: 10.1126/science.244.4906.796 pmid: 17802237
[28] NACHMAN R J . Peptidomics applied: A new strategy for development of selective antagonists/agonists of insect pyrokinin (FXPRLamide) family using a novel conformational-mimetic motif. EuPA Open Proteomics, 2014,3:138-142.
doi: 10.1016/j.euprot.2014.02.008
[29] XU J, SU J Y, SHEN J L, XU W H . Cloning and expression of the gene encoding the diapause hormone and pheromone biosynthesis activating neuropeptide of the beet armyworm, Spodoptera exigua. DNA Sequence. 2007,18(2):145-151.
doi: 10.1080/10425170601060806 pmid: 17364826
[30] 陆沁 . 斜纹夜蛾性信息素合成激活肽(PBAN)的基因克隆及功能分析.[D]. 昆明: 云南大学, 2015.
LU Q . Identification and functional analysis of the pheromone biosynthesis activating neuropeptide (PBAN) in the common cutworm moth Spodoptera litura (Lepidoptera: Noctuidae)[D]. Kunming: Yunnan University, 2015. ( in Chinese)
[31] ZHANG T Y, SUN J S, ZHANG Q R, XU J, JIANG R J, XU W H . The diapause hormone-pheromone biosynthesis activating neuropeptide gene of Helicoverpa armigera encodes multiple peptides that break, rather than induce, diapause. Journal of Insect Physiology., 2004,50(6):547-554.
doi: 10.1016/j.jinsphys.2004.03.011 pmid: 15183284
[32] 李娟 . 沙棘木蠹蛾PBAN与JHAMT的分子特征及对性信息素合成调控的研究.[D]. 北京: 北京林业大学, 2013.
LI J . Molecular characterization of PBAN and JHAMT and their effect on pheromone biosynthesis from the seabuckthorn carpenterworm, Holcocerus hippophaecolus (Lepidoptera: Cossidae)[D]. Beijing: Beijing Forestry University, 2013. ( in Chinese)
[33] RAINA A K, KLUN J A, STADELBACHER E A . Diel periodicity and effect of age and mating on female sex pheromone titer inHeliothis ze.(Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 1986,79(1):128-131.
doi: 10.1093/aesa/79.1.128
[34] RAFAELI A, BOBER R . The effect of the juvenile hormone analog, fenoxycarb on the PBAN-receptor and pheromone production in adults of the moth Helicoverpa armigera: an “aging” hormone in adult females? Journal of Insect Physiology, 2005,51(4):401-410.
doi: 10.1016/j.jinsphys.2005.01.004 pmid: 15890183
[35] 宋春满, 李天飞 . 烟夜蛾性信息素的研究利用进展. 西南农业大学学报, 2001,23(2):153-155.
doi: 10.3969/j.issn.1673-9868.2001.02.018
SONG C M, LI T F . Advances in the study and application of sex pheromone of Helicoverpa assulta. Journal of Southwest Agricultural University, 2001,23(2):153-155. (in Chinese)
doi: 10.3969/j.issn.1673-9868.2001.02.018
[36] 高景林, 赵冬香 . 昆虫信息化合物. 热带农业科学, 2005,25(4):86-91.
GAO J L, ZHAO D X . Semiochemicals in insect behavior and ecology. Chinese Journal of Tropical Agriculture, 2005,25(4):86-91. (in Chinese)
[37] DELISLE J, PICIMBON J F, SIMARD J . Regulation of pheromone inhibition in mated females of Choristoneura fumiferana and C. rosaceana. Journal of Insect Physiology., 2010,46(6):913-921.
[38] NAGALAKSHMI V K, APPLEBAUM S W, AZRIELLI A, RAFAELI A . Female sex pheromone suppression and the fate of sex-peptide-like peptides in mated moths of Helicoverpa armigera. Archives of Insect Biochemistry and Physiology, 2007,64(3):142-155.
doi: 10.1002/arch.20167 pmid: 17294422
[39] AHN S J, MAN Y C, BOO K S . Mating effect on sex pheromone production of the oriental tobacco budworm, Helicoverpa assulta. Journal of Asia-Pacific Entomology, 2002,5(1):43-48.
doi: 10.1016/S1226-8615(08)60131-4
[40] 徐瑞斌 . 光周期、营养源和植物挥发物对小菜蛾成虫生物学的影响.[D]. 福州: 福建农林大学, 2016.
XU R B . Effects of photoperiod, nutrition and plant volatile on the biological characteristic of adult diamondback moth, Plutella xylostella[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. ( in Chinese)
[1] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[2] HUANG JinFeng,LÜ TianXing,WANG Xu,WANG YingDa,WANG DongMei,YAN ZhongYe,LIU Zhi. Genome-Wide Identification and Expression Pattern Analysis of LRR-RLK Gene Family in Apple [J]. Scientia Agricultura Sinica, 2021, 54(14): 3097-3112.
[3] LU BaoShun,ZHU YongJing,ZHANG ShuTing,LÜ YuMeng,LI XiaoFei,SONG YuYang,LAI ZhongXiong,LIN YuLing. Whole-Genome Identification and Expression Analysis of SPL Gene Family in Dimocarpus Longan [J]. Scientia Agricultura Sinica, 2020, 53(20): 4259-4270.
[4] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[5] WeiYuan SONG,Yu HOU,JianYu ZHAO,XiaoFeng LIU,XiaoLan ZHANG. Cloning and Functional Analysis of CsRPL1/2 in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 148-159.
[6] SONG Yang,LIU HongDi,WANG HaiBo,ZHANG HongJun,LIU FengZhi. Molecular Cloning and Functional Characterization of VcNAC072 Reveals Its Involvement in Anthocyanin Accumulation in Blueberry [J]. Scientia Agricultura Sinica, 2019, 52(3): 503-511.
[7] YUAN GaoPeng, HAN XiaoLei, BIAN ShuXun, ZHANG LiYi, TIAN Yi, ZHANG CaiXia, CONG PeiHua. Bioinformatics and Expression Analysis of the LIM Gene Family in Apple [J]. Scientia Agricultura Sinica, 2019, 52(23): 4322-4332.
[8] ZHANG Han,WANG XueMin,LIU XiQiang,MA Lin,WEN HongYu,WANG Zan. Cloning Expression Analysis and Transformation of MsGAI Gene from Medicago sativa L [J]. Scientia Agricultura Sinica, 2019, 52(2): 201-214.
[9] DING Lan,GU Bao,LI PeiYing,SHU Xin,ZHANG JianXia. Genome-Wide Identification and Expression Analysis of SAP Family in Grape [J]. Scientia Agricultura Sinica, 2019, 52(14): 2500-2514.
[10] LIU Chao, WANG LingLi, WU Di, DANG JiangBo, SHANG Wei, GUO QiGao, LIANG GuoLu. Molecular Cloning of Leaf Developmental Gene EjGRF5, Its Promoter and Expression Analysis in Different Ploidy Loquat (Eriobotrya japonica (Thunb.) Lindl.) [J]. Scientia Agricultura Sinica, 2018, 51(8): 1598-1606.
[11] ZHANG Kui, PAN GuangZhao, SU JingJing, TAN Juan, XU Man, LI YuTian, CUI HongJuan. Identification, Expression, Subcelluar Localization, and Function of glial cell missing (gcm) in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1401-1411.
[12] LI Rui, AN JianPing, YOU ChunXiang, WANG XiaoFei, HAO YuJin. Molecular Cloning and Functional Characterization of Purple Acid Phosphatase Related Gene MdPAP10 of Apple [J]. Scientia Agricultura Sinica, 2018, 51(6): 1182-1191.
[13] CHENG Jie, ZHANG XinSheng, LI AnQi, JIANG Jing. Functional Analysis of SlSWEET7a Gene During Maturation of Tomato Fruits [J]. Scientia Agricultura Sinica, 2018, 51(15): 2958-2968.
[14] LI ZhanSheng, LIU YuMei, FANG ZhiYuan, YANG LiMei, ZHUANG Mu, ZHANG YangYong, Lü HongHao. Full Length Cloning, Expression and Correlation Analysis of P450 CYP79F1 Gene with Sulforaphane Content in Different Broccoli Organs [J]. Scientia Agricultura Sinica, 2018, 51(12): 2357-2367.
[15] LI XuJuan, ZI QiuYan, LI ChunJia, LIU HongBo, LIN XiuQin, XU ChaoHua, LU Xin, MAO Jun, LIU XinLong. Cloning and Expression Analysis of TAD1 (ScTAD1) in Sugarcane [J]. Scientia Agricultura Sinica, 2017, 50(9): 1571-1581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!