Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (19): 3671-3682.doi: 10.3864/j.issn.0578-1752.2016.19.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Biological Characteristics of Plant MicroRNAs and Actions in Environmental Stresses

ZENG You-ling, YANG Rui-rui   

  1. College of Life Science and Technology, Xinjiang University/Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046
  • Received:2016-04-28 Online:2016-10-01 Published:2016-10-01

Abstract: MicroRNA (miRNA) is an extensive class of non-coding and small molecular RNA with length about 21 nt. It is encoded by the endogenous gene and transcribed by RNA polymerase II and the precursor miRNA is processed into mature miRNA by Dicer-Like and a series of the protein complexes. miRNA mainly regulates its targets at the level of post-transcription mediated degradation of target mRNA or translation inhibition. miRNA is an important regulator of gene expression in eukaryotic cells. Lin-4 is the first animal miRNA discovered in Caenorhabditis elegans (C. elegans). It is essential for the growth and development of C. elegans by negative controlling the expression level of target gene lin-14 with partial complementarity to lin-14 mRNA in the 3′untranslated region (UTR), causing the degradation of lin-14 gene and thus inhibiting the expression of lin-14 gene. Arabidopsis miR171 is discovered as the first miRNA in plant, which targets mRNA of Scarecrow-like (SCL) family, and thus miR171 can affect plant growth and development by negative regulating target gene expression. Plant partial miRNAs (from miR156 to miR408) are relatively conserved among different species and other miRNAs after miR408 are species-specific. Plants will encounter all kinds of unpredictably environmental stresses (salinity, drought, heavy metal, pest and pathogen infection), because of plant sessile growth, no moving to avoid the adversely environmental effects like animals. Therefore, it is necessary for plants to cope with these stresses with their special mechanisms. Actually, plants grown chronically in the stressed environments have evolved highly complicated and delicate physiological and molecular mechanisms. Studies have showed that miRNA and its target genes are the main regulatory factors in response to various stresses. miRNAs play important roles in regulating the expression of endogenous resistance genes by involving in plant growth and development, signal transduction, protein degradation, nutrient deficiency, preventing pathogen invasion and adapting to high salt- and drought-stressed environments as well. So far, lots of miRNAs are identified and have significantly differential expression by next-generation deep sequencing, advanced bioinformatics and real-time quantitative PCR technologies in response to environmental stresses; and the plants show the resistant or sensitive phenotypes by microRNA-based transformation. The different members of miRNA family responding to environmental stresses are also taken on being species-specific. It is well-known that China’s Xinjiang is a kind of typical continental arid climate with a low annual rainfall and more acid areas. In such harsh environments, some extremely salt- and drought-tolerant halophytes and xerophytes can still survive healthy and strong. It is very essential to study deeply how plant miRNAs play regulatory roles in coping with environmental stresses. This paper mainly summarizes plant miRNA biosynthesis, the modes of actions with target genes and research status of some miRNAs involving in the abiotic and biotic stresses. Some prospects are expected by microRNA-based biotechnology.

Key words: plant microRNAs, biosynthesis, mechanism, environmental stresses

[1]    Ding J, Zhou S, Guan J. Finding microRNA targets in plants: current status and perspectives. Genomics, Proteomics & Bioinformatics, 2012, 10(5): 264-275.
[2]    Gielen H, Remans T, Vangronsveld J, Cuypers A. MicroRNAs in metal stress: specific roles or secondary responses? International Journal of Molecular Sciences, 2012, 13(12): 15826-15847.
[3]    LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843-854.
[4]    Llave C, Xie Z X, Kasschau K D, Carrington J C. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 2002, 297(5589): 2053-2056.
[5]    Grimplet JAgudelo-Romero PTeixeira R T, Martinez- Zapater J MFortes A M. Structural and functional analysis of the GRAS gene family in grapevine indicates a role of GRAS proteins in the control of development and stress responses. Frontiers in Plant Science, 2016, 7: 353.
[6]    Llave C. MicroRNAs: more than a role in plant development? Molecular Plant Pathology, 2004, 5(4): 361-366.
[7]    Kim B H, Kwon Y, Lee B, Nam K H. Overexpression of miR172 suppresses the brassinosteroid signaling defects of bak1 in Arabidopsis. Biochemical and Biophysical Research Communications, 2014, 447(3): 479-484.
[8]    Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell, 2004, 16(8): 2001-2019.
[9]    Ding D, Zhang L F, Wang H, Liu Z J, Zhang Z X, Zheng Y L. Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany, 2009, 103(1): 29-38.
[10]   Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136(4): 669-687.
[11]   Rogers K, Chen X M. Biogenesis, turnover, and mode of action of plant microRNAs. The Plant Cell, 2013, 25: 2383-2399.
[12]   Tang G. Plant microRNAs: An insight into their gene structures and evolution. Seminars in Cell & Developmental Biology, 2010, 21(8): 782-789.  
[13]   Kruszka K, Pacak A, Swida-Barteczka A, Nuc P, Alaba S, Wroblewska Z, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z. Transcriptionally and post- transcriptionally regulated microRNAs in heat stress response in barley. Journal of Experimental Botany, 2014, 65(20): 6123-6135.
[14]   Fang Y J, Xie K B, Xiong L Z. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. Journal of Experimental Botany, 2014, 65(8): 2119-2135.
[15]   Zhang B H, Wang Q L. MicroRNA-based biotechnology for plant improvement. Journal of Cellular Physiology, 2015, 230(1): 1-15.  
[16]   Lu Y D, Gan Q H, Chi X Y, Qin S. Roles of microRNA in plant defense and virus offense interaction. Plant Cell Reports, 2008, 27(10): 1571-1579.
[17]   Verma S S, Sinha R, Rahman M H, Megha S, Deyholos M K, Kav N N V. miRNA-mediated posttranscriptional regulation of gene expression in ABR17-transgenic Arabidopsis thaliana under salt stress. Plant Molecular Biology Reporter, 2014, 32(6): 1203-1218.
[18]   Kim V N. MicroRNA biogenesis: Coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 2005, 6(5): 376-385.
[19]   Zhang B H, Pan X P, Stellwag E J. Identification of soybean microRNAs and their targets. Planta, 2008, 229(1): 161-182.
[20]   Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.
[21]   Kumar R. Role of microRNAs in biotic and abiotic stress responses in crop plants. Applied Biochemistry and Biotechnology, 2014, 174(1): 93-115.
[22]   Zhou M, Luo H. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Molecular Biology, 2013, 83(1/2): 59-75.
[23]   Boutet S, Vazquez F, Liu J, Beclin C, Fagard M, Gratias A, Morel J B, Crete P, Chen X M, Vaucheret H. Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Current Biology, 2003, 13(10): 843-848.
[24]   Yu B, Yang Z Y, Li J J, Minakhina S, Yang M C, Padgett R W, Steward R, Chen X M. Methylation as a crucial step in plant microRNA biogenesis. Science, 2005, 307(5711): 932-935.
[25]   Liu Y X, Wang M, Wang X J. Endogenous small RNA clusters in plants. Genomics, Proteomics & Bioinformatics, 2014, 12(2): 64-71.
[26]   Yu B, Wang H. Translational inhibition by microRNAs in plants. Progress in Molecular and Subcellular Biology, 2010, 50: 41-57.
[27]   Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 2014, 42: D68-D73.
[28]   Covarrubias A A, Reyes J L. Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell and Environment, 2010, 33(4): 481-489. 
[29]   Lu X Y, Huang X L. Plant miRNAs and abiotic stress responses. Biochemical and Biophysical Research Communications, 2008, 368(3): 458-462. 
[30]   Llave C, Kasschau K D, Rector M A, Carrington J C. Endogenous and silencing-associated small RNAs in plants. The Plant cell, 2002, 14(7): 1605-1619.
[31]   Kusenda B, Mraz M, Mayer J, Pospisilova S. MicroRNA biogenesis, functionality and cancer relevance. Biomedical Papers (Olomouc), 2006, 150(2): 205-215.
[32]   Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P. Prediction of plant microRNA targets. Cell, 2002, 110(4): 513-520.
[33]   Höck J, Meister G. The argonaute protein family. Genome Biology, 2008, 9(2): 210.
[34]   Lu Y Z, Feng Z, Bian L Y, Xie H, Liang J S. miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CSD1 and CSD2 expression. Functional Plant Biology, 2011, 38(1): 44-53.
[35]   Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta, 2009, 229(4): 1009-1014.
[36]   Hwang E, Shin S, Yu B, Byun M, Kwon H. miR171 family members are involved in drought response in Solanum tuberosum. Journal of Plant Biology, 2011, 54(1): 43-48.
[37]   Cui L G, Shan J X, Shi M, Gao J P, Lin H X. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. The Plant Journal, 2014, 80(6): 1108-1117.
[38]   Zhou X F, Wang G D, Zhang W X. UV-B responsive microRNA genes in Arabidopsis thaliana. Molecular Systems Biology, 2007, 3: 103.
[39]   Jia X Y, Ren L G, Chen Q J, Li R Z, Tang G L. UV-B- responsive microRNAs in Populus tremula. Journal of Plant Physiology, 2009, 166(18): 2046-2057.
[40]   Wang B, Sun Y F, Song N, Wang X J, Feng H, Huang L L, Kang Z S. Identification of UV-B-induced microRNAs in wheat. Genetics and Molecular Research, 2013, 12(4): 4213-4221.
[41]   Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.
[42]   Liu H H, Tian X, Li Y J, Wu C, Zheng C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 2008, 14(5): 836-843.
[43]   Si J N, Zhou T, Bo W H, Xu F, Wu R L. Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing. BMC Genetics, 2014, 15(Suppl. 1): S6.
[44]   Zhao B T, Ge L F, Liang R Q, Li W, Ruan K C, Lin H X, Jin Y X. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Plant Biology, 2009, 10(1): 29.
[45]   Wang M, Wang Q L, Zhang B H. Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene, 2013, 530(1): 26-32.
[46]   Kim J Y, Kwak K J, Jung H J, Lee H J, Kang H. MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE protein3 mRNA. Plant and Cell Physiology, 2010, 51(6): 1079-1083.
[47]   Gao P, Bai X, Yang L, Lv D K, Li Y, Cai H, Ji W, Guo D J, Zhu Y M. Over-expression of osa-miR396c decreases salt and alkali stress tolerance. Planta, 2010, 231(5): 991-1001.
[48]   Sunkar R. MicroRNAs with macro-effects on plant stress responses. Seminars in Cell & Developmental Biology, 2010, 21(8): 805-811.
[49]   Xie F L, Wang Q L, Sun R R, Zhang B H. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. Journal of Experimental Botany, 2015, 66(3): 789-804. 
[50]   Jia X Y, Wang W X, Ren L G, Chen Q J, Mendu V, Willcut B, Dinkins R, Tang X, Tang G L. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Molecular Biology, 2009, 71(1/2): 51-59.
[51]   Zhu J F, Li W F, Yang W H, Qi L W, Han S Y. Identification of microRNAs in Caragana intermedia by high-throughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress. Plant Cell Reports, 2013, 32(9): 1339-1349.
[52]   Paul S, Kundu A, Pal A. Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tissue and Organ Culture, 2011, 105(2): 233-242.
[53]   Frazier T P, Sun G, Burklew C E, Zhang B H. Salt and drought stresses induce the aberrant expression of microRNA genes in Tobacco. Molecular Biotechnology, 2011, 49(2): 159-165.
[54]   Kazan K. Auxin and the integration of environmental signals into plant root development. Annals of Botany, 2013, 112(9): 1655-1665.
[55]   Xie F L, Jr Stewart CN, Taki F A, He Q L, Liu H W, Zhang B H. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnology Journal, 2014, 12(3): 354-366. 
[56]   Li B S, Duan H, Li J G, Deng X W, Yin W L, Xia X L. Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Molecular Biology, 2013, 81(6): 525-539. 
[57]   Tian Y H, Tian Y M, Luo X J, Zhou T, Huang Z P, Liu Y, Qiu Y H, Hou B, Sun D, Deng H Y. Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis. BMC Plant Biology, 2014, 14: 226.
[58]   Zhou M, Li D Y, Li Z G, Hu Q, Yang C H, Zhu L H, Luo H. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiology, 2013, 161(3): 1375-1391.
[59]   Zhang N, Yang J W, Wang Z M, Wen Y K, Wang J, He W H, Liu B L, Si H J, Wang D. Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PLoS One, 2014, 9(4): e95489.
[60]   Hackenberg M, Gustafson P, Langridge P, Shi B J. Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnology Journal, 2015, 13(1): 2-13.
[61]   Bhardwaj A R, Joshi G, Pandey R, Kukreja B, Goel S, Jagannath A, Kumar A, Katiyar-Agarwal S, Agarwal M. A genome-wide perspective of miRNAome in response to high temperature, salinity and drought stresses in Brassica juncea (Czern) L.. PLoS One, 2014, 9(3): e92456.
[62]   Han Y Y, Zhang X, Wang Y F, Ming F. The suppression     of WRKY44 by GIGANTEA-miR172 pathway is involved in  drought response of Arabidopsis thaliana. PLoS One, 2013, 8(11): e73541.
[63]   Wang Gaskin, 余道乾, 杜雄明. 陆地棉种子发育过程中microRNA的挖掘与功能研究. 棉花学报, 2014, 26(1): 81-86.
WANG G, YU D Q, DU X M. ldentification of micoRNAs in upland cotton. Cotton Science, 2014, 26(1): 81-86. (in Chinese)
[64]   Ferdous J, Hussain S S, Shi B J. Role of microRNAs in plant drought tolerance. Plant Biotechnology Journal, 2015, 13(3): 293-305. 
[65]   Lutts S, Lefevre I. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Annals of Botany, 2015, 115(3): 509-528.
[66]   Kandziora-Ciup M, Ciepal R, Nadgórska-Socha A, Barczyk G. Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites. Ecotoxicology, 2016, 25(5): 970-981.
[67]   Gupta O P, Sharma P, Gupta R K, Sharma I. MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives. Plant Molecular Biology, 2014, 84(1/2): 1-18. 
[68]   丁艳菲, 朱诚, 王珊珊, 刘海丽. 植物microRNA 对重金属胁迫响应的调控. 生物化学与生物物理进展, 2011, 38(12): 1106-1110.
DING Y F, ZHU C, WANG S S, LIU H L. Reulation of heavy metal stress response by plant microRNAs. Progress in Biochemistry and Biophysics, 2011, 38(12): 1106-1110. (in Chinese)
[69]   Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. The Plant Cell, 2006, 18(8): 2051-2065.
[70]   Ding Y F, Chen Z, Zhu C. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). Journal of Experimental Botany, 2011, 62(10): 3563-3573.
[71]   Park J, Song W Y, Ko D, Eom Y, Hansen T H, Schiller  M, Lee T G, Martinoia E, Lee Y. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. The Plant Journal, 2012, 69(2): 278-288.
[72] Ding Y F, Qu A L, Gong S M, Huang S X, Lü B, Zhu C. Molecular identification and analysis of Cd-responsive microRNAs in rice. Journal of Agricultural and Food Chemistry, 2013, 61(47): 11668-11675.
[73]   Lecellier C H, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O. A cellular microRNA mediates antiviral defense in human cells. Science, 2005, 308(5721): 557-560.
[74]   陈晓婷, 刘军, 孙翠霞, 林桂芳. 草酸胁迫下拟南芥三个差异表达microRNA的分析. 农业生物技术学报, 2014, 22(4): 432-439.
CHEN X T, LIU J, SUN C X, LIN G F. Three differentially expressed microRNA in Arabidopsis thaliana under the stress of oxalic acid. Journal of Agricultural of Biotechnology, 2014, 22(4): 432-439. (in Chinese)
[75]   Khraiwesh B, Zhu J K, Zhu J H. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta, 2012, 1819(2SI): 137-148.
[76]   Inal B, Turktas M, Eren H, Ilhan E, Okay S, Atak M, Erayman M, Unver T. Genome-wide fungal stress responsive miRNA expression in wheat. Planta, 2014, 240(6): 1287-1298.
[77]   Wu F L, Shu J H, Jin W B. Identification and validation of miRNAs associated with the resistance of maize (Zea mays L.) to Exserohilum turcicum. PLoS One, 2014, 9(1): e87251.
[78]   卢远根. 水稻中与水稻一稻瘟病菌互作相关的microRNA初步研究[D]. 雅安: 四川农业大学, 2014.
LU Y G. Identification of rice microRNAs invovled in rice-- Magnaporthe oryzae interaction [D]. Yaan: Sichuan Agricultural University, 2014. (in Chinese)
[79]   Li F, Pignatta D, Bendix C, Brunkard J O, Cohn M M, Tung J, Sun H, Kumar P, Baker B. MicroRNA regulation of plant innate immune receptors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5): 1790-1795.
[80]   Niu Q W, Lin S S, Reyes J L, Chen K C, Wu H W, Yeh S D, Chua N H. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 2006, 24(11): 1420-1428. 
[81]   Qu J, Ye J, Fang R X. Artificial microRNA-mediated virus resistance in plants. Journal of Virology, 2007, 81(12): 6690-6699. 
[82]   Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones J D G. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 2006, 312(5772): 436-439.
[83]   卫波, 张荣志, 李爱丽, 毛龙. 利用高通量测序技术发现植物小分子RNA研究进展.中国农业科学, 2009, 42(11): 3755-3764.
WEI B, ZHANG R Z, LI A L, MAO L. Progress in plant small RNA research via high-throughput sequencing. Scientia Agricultura Sinica, 2009, 42(11): 3755-3764. (in Chinese)
[84]   易小娅, 杨瑞瑞, 曾幼玲. 植物microRNA的研究方法概述. 植物生理学报, 2015, 51(4): 413-423.
YI X Y, YANG R R, ZENG Y L. Overview of research methods for plant miRNAs. Plant Physiology Journal, 2015, 51(4): 413-423. (in Chinese)
[85]   张俊红, 张守攻, 齐力旺, 童再康. 植物成熟microRNA转录后修饰与降解的研究进展. 植物学报, 2014, 49(4): 483-489.
ZHANG J H, ZHANG S G, QI L W, TONG Z K. Research advances in post-transcriptional modification and degradation of mature microRNAs in plants. Bulletin of Botany, 2014, 49(4): 483-489. (in Chinese)
[1] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[2] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[3] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[4] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[5] CuiQing WU,JingXin SUN,PingYi GUO,HongFu WANG,XinHui WU. Effects of Agronomic Managements on Yield and Lodging Resistance of Millet [J]. Scientia Agricultura Sinica, 2021, 54(6): 1127-1142.
[6] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[7] YAO Qing,YAO Bo,LÜ Jun,TANG Jian,FENG Jin,ZHU XuHua. Research on Fine-Grained Image Recognition of Agricultural Light- Trap Pests Based on Bilinear Attention Network [J]. Scientia Agricultura Sinica, 2021, 54(21): 4562-4572.
[8] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[9] CHEN Zhi,ZHANG Yi,LU QinYue,GUO JiaHe,LIANG Yan,ZHANG MingYiXing,YANG ZhangPing. Effect and Mechanism of Tea Tree Oil on LPS Induced Mastitis in Dairy Cows [J]. Scientia Agricultura Sinica, 2021, 54(14): 3124-3133.
[10] CUI YiFang,ZHENG Min,DING ShuangYang,ZHU Kui. Advances of Biosynthesis and Toxicity of Cereulide Produced by Emetic Bacillus cereus [J]. Scientia Agricultura Sinica, 2021, 54(12): 2666-2674.
[11] WANG XiaQing,SONG Wei,ZHANG RuYang,CHEN YiNing,SUN Xuan,ZHAO JiuRan. Genetic Research Advances on Maize Stalk Lodging Resistance [J]. Scientia Agricultura Sinica, 2021, 54(11): 2261-2272.
[12] WANG Xiao,CAI Jian,ZHOU Qin,DAI TingBo,JIANG Dong. Physiological Mechanisms of Abiotic Stress Priming Induced the Crops Stress Tolerance: A Review [J]. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301.
[13] ZHAO Juan,YIN YiZhen,WANG XiaoLu,MA ChunYing,YIN MeiQiang,WEN YinYuan,SONG XiE,DONG ShuQi,YANG XueFang,YUAN XiangYang. Physiological Response of Millet Callus with Different Herbicide-Resistance to Sethoxydim Stress [J]. Scientia Agricultura Sinica, 2020, 53(5): 917-928.
[14] GUAN LiJun,XUE Yun,DING WenWen,ZHAO ZhanQin. Advances in Mechanisms of Biosynthesis and Regulation of Pasteurella multocida Capsule [J]. Scientia Agricultura Sinica, 2020, 53(3): 658-668.
[15] CHEN Chen,JIANG AiLi,LIU ChengHui,ZHAO QiQi,ZHANG YanHui,HU WenZhong. Effect of UV-C on the Browning of Fresh-Cut Huangguan Pear [J]. Scientia Agricultura Sinica, 2020, 53(24): 5081-5090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!