Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (9): 1881-1891.doi: 10.3864/j.issn.0578-1752.2013.09.016

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Expression Analysis of Eukaryotic Translation Initiation Factor 4E Gene and Screening of the Interactive Protein from Chrysanthemum×morifolium

 LOU  Wang-Huai, AN  Juan, SONG  Ai-Ping, CHEN  Su-Mei, JIANG  Jia-Fu, CHEN  Fa-Di, FANG  Wei-Min, GUAN  Zhi-Yong   

  1. College of Horticulture, Nanjing Agricultural University, Nanjing 210095
  • Received:2012-04-13 Online:2013-05-01 Published:2013-03-06

Abstract: 【Objective】In order to study the expression patterns and function of translation initiation factor 4E in the Chrysanthemum, the eukaryotic translation initiation factor 4E gene was cloned from Chrysanthemum× morifolium ‘Jinba’ and its expression was analyzed, and the proteins interacting with the CmeIF4E protein were screened subsequently.【Method】CmeIF4E gene was cloned from Chrysanthemum by RT-PCR and RACE, the primers were designed according to the conserve motifs of eIF4E from several plant species, whose sequence of eIF4E has been reported. The expression patterns of CmeIF4E was analyzed by quantitative real-time PCR and subcellular localization, then screened the interacting proteins via yeast two-hybrid system.【Result】The eIF4E gene cloned from Chrysanthemum is 914 bp in length, ORF 654 bp, encoding 218 amino acids, named CmeIF4E. The sequences were submitted into GenBank database with accession No. JQ904591. The amino acid sequence analysis showed that the genetic relationships between Chrysanthemum and lettuce were the closest, and this result was consistent with plant taxonomy. Quantitative real-time PCR analysis showed that the CmeIF4E gene expressed in all tissues of Chrysanthemum ‘jinba’, the expression level of CmeIF4E in the young roots was the highest, next by the leaves, and was the lowest in stems. The subcellular localization assay showed that CmeIF4E was expressed in the cell nucleus, cytoplasm and cell membrane. The interacting proteins of CmeIF4E were related to the pathways of translation and post-translational modifications, photosynthesis, stress tolerance and defense.【Conclusion】CmeIF4E was constitutively expressed in Chrysanthemum tissues, while transient expression showed that CmeIF4E protein was located in the nucleus, cytoplasm and cell membrane. The candidate proteins screened by Y2H system showed that CmeIF4E might play an important role in translation initiation, photosynthetic system, plant resistance defense. All these results provided an important basis for the further study of the role of the CmeIF4E protein in Chrysanthemum.

Key words: Chrysanthemum ×, morifolium , eIF4E , virus , expression analysis , subcellular localization , yeast two-hybrid system

[1]Nicaise V, German-Retana S, Sanjuan R, Dubrana M P, Mazier M.The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiology, 2003, 132(3): 1272-1282.

[2]Ruffel S, Gallois J L, Moury B, Robaglia C, Palloix, A, Caranta C. Simultaneous mutations in translation initiation factors eIF4E     and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. The Journal of General Virology, 2006, 87(7): 2089-2098.

[3]言普, 沈文涛, 高新征, 李亚丽, 周鹏. 番木瓜eIF(iso)4E基因克隆及其结构和表达分析.园艺学报, 2009, 36(10): 1437-1442.

Yan P, Shen W T, Gao X Z, Li Y L, Zhou P. eIF(iso)4E full sequence cloning and structure and expression analyzing in Papaya. Acta Horticulturae Sinica, 2009, 36(10): 1437-1442. (in Chinese)

[4]张进安, 司履生. eIF- 4E与肿瘤. 国外医学- 生理、病理科学与临床分册, 2004, 24(1): 75-77.

Zhang J A, Si L S. eIF-4E and tumor. Foreign medical sciences•section of pathophysiology and clinical medicine. 2004, 24(1): 75-77. (in Chinese)

[5]von der Haar T, Gross J D, Wagner G, McCarthy J E. The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nature Structural and Molecular Biology, 2004, 9(11): 503-511.

[6]Hernández G., Vazquez-Pianzola P. Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mechanisms of Development, 2005, 122(7): 865-876.

[7]卢航, 赵小明, 白雪芳, 杜昱光. 翻译起始因子4E在植物病毒侵染中的作用. 中国农业科技导报, 2007, 9(6): 35-40.

Lu H, Zhao X M, Bai X F, Du Y G. The resistant effect of eIF4E to plant virus. Journal of Agricultural Science and Technology, 2007, 9 (6): 35-40. (in Chinese)

[8]Rosenwald I B. The role of translation in neoplastic transformation from a pathologist’s point of view. Oncogene, 2004, 23(18): 3230-3247.

[9]Seki N, Tckasu T, Mandai K. Expression of eukaryotic initiation factor 4E in atypical adenomatous hyperplasia and adenocarcinoma of the human peripheral lung. Clinical Cancer Research, 2002, 8(10): 3046-3053.

[10]Léonard S, Chisholm J, Laliberté J, Sanfaçon H. Interaction in vitro between the proteinase of Tomato ringspot virus (genus Nepovirus) and the eukaryotic translation initiation factor iso4E from Arabidopsis thaliana. Journal of General Virology, 2002, 83(8): 2085-2089.

[11]袁贞, 沈文涛, 王冬梅, 周鹏. 翻译起始因子4E及其异构体与植物病毒感染的联系. 安徽农业科学, 2008, 36(9) :3756-3758.

Yuan Z, Shen W T, Wang D M, Zhou P. Eukaryotic initiation factor 4E and its isoformand the factor for plant RNA virus infection. Journal of Anhui Agricultural Sciences, 2008, 36(9): 3756-3758. (in Chinese) 

[12]Gazo B M, Murphy P, Gatchel J R, Browning K S. A novel interaction of cap-binding protein complexes eukaryotic initiation factor (eIF) 4F and eIF(iso) 4F with a region in the 3′-untranslated region of Satellite tobacco necrosis virus. The Journal of Biological Chemistry, 2004, 279(14): 13584-13592.

[13]Miyoshi H, Suehir O N, Tomoo K., Muto S, Takahashi T, Tsukamoto T, Ohmori T, Natsuaki T. Binding analyses for the interaction between plant virus genome-linked protein (VPg) and plant translational initiation factors. Biochimie, 2005, 88(3/4): 329 - 340.

[14]Roudet-Tavert G, Michon T, Walter J, Delaunay T, Redondo E, Gall O L. Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro. Journal of General Virology, 2007, 88(3): 1029-1033.

[15]Gao Z H, Johansen E, Eyers S, Thomas C L, Ellis T H N, Maule A J. The potyvirus recessive resistance gene, sbm1, identi?es a novel role for translation initiation factor eIF4E in cell-to-cell traf?cking. The Plant Journal, 2004, 40(3), 376-385.

[16]Zhang Y, Li H, Ouyang B, Ye Z. Regulation of eukaryotic initiation factor 4E and its isoform: implications for antiviral strategy in plants. Journal of Integrative Plant Biology, 2006, 48(10), 1129-1139.

[17]Yeam I, Cavatorta J R, Ripoll D R, Kang B C, Jahn M M. Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive potyvirus resistance in plants. Plant Cell, 2007, 19(9): 2913-2928.

[18]Menand B, Meyer C, Robaglia C. Plant growth and the TOR pathway. Current Topics in Microbiology and Immunology, 2004, 279: 97-113.

[19]Jonathan C, Marie P, Gerben E, Frank M, David T. Translation initiation factors eIF4E and eIFiso4E are required for polysome formation and regulate plant growth in tobacco. Plant Molecular Biology, 2005, 57(5): 749-760.

[20]Plante D, Viel C, Léonard V, Tampo H, Laliberté J, Fortin M  G.. Turnip mosaic virus VPg does not disrupt the translation initiation complex but interferes with cap binding. Physiological and Molecular Plant Pathology, 2004, 64(4): 219-226.

[21]Zhang Y Y, Qi M Q, Sun J, Zhang X H, Shi H L, Li H X, Zhi-Biao Ye Z B. Molecular cloning and characterization of a gene encoding eukaryotic initiation factor iso4e in tomato (Solanum lycopersicum). Plant Molecular Biology Repoter, 2012, 27(3): 400-406.

[22]于威, 韩剑秋, 张耀洲. 家蚕真核细胞翻译起始因子(BmeIF4E)基因的克隆、表达及功能分析. 农业生物技术学报, 2011, 19(2): 206-213.

Yu W, Han J Q, Zhang Y Z. Cloning, expression and function analyses of eukaryotic translation initiation factor 4E(BmeIF4E) gene from silkworm Pupa (Bombyx mori). Journal of Agricultural Biotechnology, 2011, 19(2): 206- 213. (in Chinese)

[23]Culjkovic B, Topisirovic I, Borden K L B. Controlling gene expression through RNA regulons: The role of the eukaryotic translation initiation factor eIF4E. Cell Cycle, 2007, 6(1): 65- 69.

[24]Rogers Jr G W, Lima W F, Merrick W C. Further characterization of the helicase activity of eIF4A substrate specificity. The Journal of Biological Chemistry, 2001, 276(16):12598-12608.

[25]郭雷, 胡洪, 任列娇, 高士争. 蛋白质翻译起始因子的作用与调控. 云南农业大学学报, 2011, 26(4): 554-559.

Guo L, Hu H, Ren L J, Gao S Z. Function and regulation of protein translation initiation factors. Journal of Yunnan Agricultural University, 2011, 26(4): 554-559. (in Chinese)

[26]李建国.核糖体失活蛋白的研究进展. 分子植物育种, 2005, 3(4): 566-570.

Li J G. The study progress on ribosome-inactivating proteins. Molecular Plant Breeding, 2005, 3(4): 566-570. (in Chinese)

[27]郝勇峰, 徐雅琴, 王丽波. 植物核糖体失活蛋白及其应用进展. 生命科学, 2011, 23(10): 951-956.

Hao Y F, Xu Y Q, Wang L B. Plants ribosome-inactivating proteins and their application. Chinese Bulletin of Life Sciences, 2011, 23(10): 951-956. (in Chinese)

[28]Nicolai M, Duprat A, Sormani R, Rodriguez C, Roncato M A, Rolland M, Robaglia C. Higher plant chloroplasts import the mRNA coding for the eucaryotic translation initiation factor 4E. FEBS Letters, 2007, 581(21): 3921-3926.

[29]Sugiura M, Hirose T, Sugita M. Evolution and mechanism of translation in chloroplasts. Annual Review of Genetics, 1998, 32(1): 437-459.
[1] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] GENG RenHao,LIU Bo,WANG Fang,LUO YuFeng,QU HongFei,FAN XueZheng,QIN YuMing,DING JiaBo,XU GuanLong,SHEN QingChun,QIN AiJian. Establishment and Application of PCR Assay for Mycoplasma Contamination in Cell Culture and Live Virus Vaccine [J]. Scientia Agricultura Sinica, 2022, 55(7): 1458-1468.
[4] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[5] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[6] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[7] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[8] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[9] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[10] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[11] WANG YanWen,WANG MengJing,ZHANG Hong,GAO XinXin,GUO Jing,LI XuYong. Evolution of Human H9N2 Avian Influenza Virus in China from 1998 to 2021 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4075-4090.
[12] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[13] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[14] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[15] WEI Tian,WANG ChengYu,WANG FengJie,LI ZhongPeng,ZHANG FangYu,ZHANG ShouFeng,HU RongLiang,LÜ LiLiang,WANG YongZhi. Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes [J]. Scientia Agricultura Sinica, 2022, 55(15): 3062-3070.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!