Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (1): 215-224.doi: 10.3864/j.issn.0578-1752.2013.01.025

• RESEARCH NOTES • Previous Articles    

Dynamic Simulation on Leaf Curve in Rice Based on Gaussian Function

 ZHANG  Yong-Hui, TANG  Liang, LIU  Xiao-Jun, LIU  Lei-Lei, CAO  Wei-Xing, ZHU  Yan   

  1. College of Agriculture, Nanjing Agricultural University/National Engineering and Technology Center for Information Agriculture/Jiangsu Key Laboratory for Information Agriculture, Nanjing 210095
  • Received:2012-08-15 Online:2013-01-01 Published:2012-10-09

Abstract: 【Objective】 The dynamic changes in leaf curve of rice under different nitrogen levels were analyzed using Gaussian function. 【Method】Based on rice pot experiments involving different years and nitrogen levels, a 3-D laser scanner was used to measure the spatial coordinate data of leaf curve at different leaf positions on main culm of rice under different nitrogen levels, then dynamic modeling technology was used to build the model of leaf curve changes at different leaf positions on main culm in rice. 【Result】 The results indicated that the angle between the end of leaf curve and positive direction of y-axis (AH) increased with growth degree days on the trend of slow-fast-slow, which could be described with the Logistic function. From the first leaf to the seventh leaf, the maximum value of AH increased with increasing leaf position, and then decreased with increasing leaf position. The significant linear relationship could be observed between sheath-leaf angle∠BFC and AH. The logistic equations were used to describe the changes of AH and the model parameter Sm in leaf curve model with growth degree day (GDD), respectively. The piecewise function was applied to describe the change of maximum AH with leaf position. A variety parameter (AH of the seventh leaf position on main culm in rice under optimal nitrogen conditions) and nitrogen factor were introduced to quantify the effects of variety and nitrogen rate on leaf drooping degree, respectively. Model validation with independent field experiment data showed that the average value of LTS-HD (least trimmed squares Hausdorff distances) between observed and predicted curve are less than 0.88 cm and 1.18 cm at tilling and jointing stages, respectively. 【Conclusion】 The model showed a good predictability for spatial dynamic change of leaf curve on main culm under different nitrogen rates during main growth stages in rice. These results would provide a technical support for visualization of leaf and plant in rice.

Key words: rice , leaf curve , dynamic simulation , Gaussian function

[1]曹宏鑫, 石春林, 金之庆. 植物形态结构模拟与可视化研究进展. 中国农业科学, 2008, 41(3): 669-677.

Cao H X, Shi C L, Jin Z Q. Advances in researches on plant morphological structure simulation and visualization. Scientia Agricultura Sinica, 2008, 41(3): 669-677. (in Chinese)

[2]Birch C J, Andrieu B, Fournier C, Vos J, Room P. Modeling kinetics of plant canopy architecture-concepts and applications. European Journal of Agronomy, 2003, 19: 519-533.

[3]肖伯祥, 郭新宇, 王纪华, 郑文刚, 王丹虹. 玉米叶片形态建模与网格简化算法研究. 中国农业科学,2007,40(4): 693-697.

Xiao B X, Guo X Y, Wang J H, Zheng W G, Wang D. Maize leaf morphological modeling and mesh simplification of surface. Scientia Agricultura Sinica, 2007, 40(4): 693-697. (in Chinese)

[4]刘晓东, 曹云飞, 刘国荣, 胡昭. 基于NURBS曲面的水稻叶形态建模. 微电子学与计算机, 2004, 21(9): 117-119.

Liu X D, Cao Y F, Liu G R, Hu Z. The modeling of rice leaf based on NURBS. Microelectronics and Computer, 2004, 21(9): 117-119. (in Chinese)

[5]Drouet J L. MODICA and MODANCA: modeling the three- dimensional shoot structure of graminaceous crops from two methods of plant description. Field Crops Research, 2003, 83: 215-222.

[6]杨红云, 罗威, 何火娇, 谢信楠. 水稻叶片形态三维建模与计算机模拟. 农机化研究, 2008(12): 33-36.

Yang H Y, Luo W, He H J, Xie X N. Rice leaf blade 3D morphology modeling and computer simulation. Journal of Agricultural Mechanization Research, 2008(12): 33-36. (in Chinese)

[7]邓旭阳, 郭新宇, 周淑秋, 郑文刚. 玉米叶片形态的几何造型研究. 中国图象图形学报, 2005, 10(5): 637-641.

Deng X Y, Guo X Y, Zhou S Q, Zheng W G. Study on the geometry modeling of corn leaf morphological formation. Journal of Image and Graphics, 2005,10(5): 637-641. (in Chinese)

[8]米湘成, 敖合军, 邹应斌, 石纪成, 蔡盛. 可视化技术及“模型-文档-视”结构在水稻生长模拟中的应用. 农业工程学报, 2003, 19(4): 164-167.

Mi X C, Ao H J, Zou Y B, Shi J C, Cai S. Application of visualization technology model-document-view architecture in crop simulation. Transactions of the CSAE, 2003, 19(4): 164-167. (in Chinese)

[9]Watanabe T, Hanan J S, Room P M, Hasegawa T, Nakagawa H, Takahashi W. Rice morphogenesis, plant architecture and 3D modeling. Annals of Botany, 2005, 95(7): 1131-1143.

[10]刘岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林. 基于生物量的水稻叶片主要几何属性模型研究. 中国农业科学, 2009, 42(11): 4093-4099.

Liu Y, Lu J F, Cao H X, Shi C L, Liu Y X, Zhu D W, Sun J Y, Yue Y B, Wei X F, Tian P P, Bao T L. Main geometrical parameter models of rice blade based on biomass. Scientia Agricultura Sinica, 2009, 42(11): 4093-4099. (in Chinese)

[11]Dornbusch T, Wernecke P, Diepenbrock W. A method to extract morphological traits of plant organs from 3D point clouds as a database for an architectural plant model. Ecological Modeling, 2007, 200(1-2): 119-129.

[12]Zhu Y, Chang L Y, Tang L, Jiang H, Zhang W, Cao W. Modeling leaf shape dynamics in rice. NJAS - Wageningen Journal of Life Sciences, 2009, 57(1): 73-81.

[13]郭焱, 李保国. 玉米冠层的数学描述与三维重建研究. 应用生态学报, 1999, 10(1): 39-41.

Guo Y, Li B G. Mathematical description and three-dimensional reconstruction of maize canopy. Chinese Journal of Applied Ecology, 1999, 10(1): 39-41. (in Chinese)

[14]章家恩, 黄润, 刘楚生, 尧卫民, 刘子凡. 玉米株叶形态结构的可视化模拟初步研究. 华南农业大学学报, 2001, 22(4): 5-7.

Zhang J E, Huang R, Liu C S, Yao W M, Liu Z F. Preliminary study on the visualization modeling of maize leaf structure. Journal of South China Agricultural University, 2001, 22(4): 5-7. (in Chinese)

[15]谭子辉. 小麦植株形态建成的模拟模型研究 [D]. 南京: 南京农业大学, 2006: 29-33.

Tan Z H. Studies on simulation mode l of morphological development in wheat plant[D]. Nanjing: Nanjing Agricultural University, 2006: 29-33. (in Chinese)

[16]Xu L F, Henke M, Zhu J, Kurth W, Buck-Sorlin G. A functional- structural model of rice linking quantitative genetic information with morphological development and physiological processes. Annals of Botany, 2011, 107: 817-828.

[17]Ding W L, Zhang Y P, Zhang Q Y, Zhu D F, Chen Q. Realistic simulation of rice plant. Rice Science, 2011, 18(3): 224-230.

[18]石春林, 朱艳, 曹卫星. 水稻叶曲线特征的机理模型. 作物学报, 2006, 32(5): 656-660.

Shi C L, Zhu Y, Cao W X. Mechanism model for rice leaf curve character. Acta Agronomica Sinica, 2006, 32(5): 656-660. (in Chinese)

[19]刘宏伟, 吴斌, 张红英, 李芳, 邵延华. 水稻叶片几何模型及其可视化研究. 计算机工程,2009,35(23): 263-265.

Liu H W, Wu B, Zhang H Y, Li F, Shao Y H. Research on rice leaf geometric model and its visualization. Computer Engineering, 2009, 35(23): 263-265. (in Chinese)

[20]郑邦友, 石利娟, 马韫韬, 邓启云, 李保国, 郭焱. 水稻冠层的田间原位三维数字化及虚拟层切法研究. 中国农业科学, 2009, 42(4): 1181-1189.

Zheng B Y, Shi L J, Ma Y T, Dong Q Y, Li B G, Guo Y. Three- Dimensional digitization in situ of rice canopies and virtual stratified-clipping method. Scientia Agricultura Sinica, 2009, 42(4): 1181-1189. (in Chinese)

[21]鲁珊, 雷英杰, 孔韦韦, 雷阳. 基于空间点特征和改进 Hausdorff 距离的图像配准方法. 系统工程与电子技术, 2011, 33(7): 1664-1667.

Lu S, Lei Y J, Kong W W, Lei Y. Image registration method based on key point feature and improved Hausdorff distance. Systems Engineering and Electronics, 2011, 33(7): 1664-1667. (in Chinese)

[22]Dornbusch T, Wernecke P, Diepenbrock W. Architectural model for barley. Visual Comput, 2007, 23: 569-581.

[23]Gao L Z, Jin Z Q, Li L. Photo-thermal models of rice growth duration for various varietal types in China. Agricultural and Forest Meteorology, 1987, 39: 205-213.

[24]孟亚利. 基于过程的水稻生长模拟模型研究[D]. 南京: 南京农业大学,2002: 34-64.

Meng Y L. A process-based simulation model for rice growth [D]. Nanjing: Nanjing Agricultural University, 2002: 34-64. (in Chinese)

[25]Confalonieri R, Debellini C, Pirondini M. A new approach for determining rice critical nitrogen concentration. Journal of Agricultural Science, 2011, 149(5): 633-638.

[26]朱相成, 汤亮, 张文宇, 曹梦莹, 曹卫星, 朱艳. 不同品种和栽培条件下水稻冠层光合有效辐射传输特征. 中国农业科学,2012, 45(1): 34-43.

Zhu X C, Tang L, Zhang W Y, Cao M Y, Cao W X, Zhu Y. Transfer characteristics of canopy photo-synthetically active radiation in different rice cultivars under different cultural conditions. Scientia Agricultura Sinica, 2012, 45(1): 34-43. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[12] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[13] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[14] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[15] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!