Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (1): 89-98.doi: 10.3864/j.issn.0578-1752.2013.01.011

• HORTICULTURE • Previous Articles     Next Articles

Genetic Diversity and Population Structure of the North China Populations of Apricot (Prunus armeniaca L.)

 ZHANG  Qiu-Ping, LIU  Dong-Cheng, LIU  Wei-Sheng, LIU  Shuo, ZHANG  Ai-Min, LIU  Ning, ZHANG  Yu-Ping   

  1. 1.Liaoning Institute of Pomolgy, Yingkou 115009, Liaoning
    2.Institute of Genetics and Developmental Biology,                     Chinese Academy of Sciences, Beijing 100101
  • Received:2012-08-30 Online:2013-01-01 Published:2012-10-25

Abstract: 【Objective】The objective of the present study is to reveal the genetic diversity, specificity and population differentiation of the North China populations in common apricot (Prunus armeniaca L.). 【Method】 A total of 21 simple sequence repeat (SSR) primers were used to detect the genetic variation, genetic diversity and population structure of 67 common apricots sampled from different regions. 【Result】 All of the 21 SSR loci were polymprphic among the 67 accessions and a total of 301 allelic variations were detected. The average number of allelic variations per locus was 14.33, ranging from 8 to 24. The average Shannon’s information index (I) per locus was 1.934 with a range of 0.65-2.67. By comparison of the diversity among different origins, the genetic diversity of local apricot was rich in the northwest Loess Plateau region. More complementary alleles existed among different geographical origin types and specific alleles existed among different geographical origin types. According to the model-based clustering method, seven groups in the North China populations were detected, and the accessions of different geographical origins were divided into three or more groups. When K=4, all the 63 tested genotypes (expect for kernel-using apricot) were divided into 3 populations: Southwestern group, North China Plain group and Eastern Hills group (Shandong and Southern of Liaoning). This is similar to the traditional classification. 【Conclusion】 A high level of genetic diversity was found in the North China population of common apricot. The most abundant genetic diversity was found in the population from the Northwest. The kernel-using apricot has a narrow genetic base, but has more specific alleles and unique ancestry source. The common apricot of the North China population can be divided into three subgroups, and the accessions from the same origin trends to be divided into the same group, with a few exception.

Key words: common apricot (Prunus armeniaca L.), North China populations, genetic diversity, genetic structure

[1]张加延, 张钊. 中国果树志•杏卷. 北京: 中国林业出版社, 2003.

Zhang J Y, Zhang Z. China Fruit-Plant Monographer Flora•Apricot. Beijing: China Forestry Publishing House, 2003. ( in Chinese)

[2]Zhebentyayeva T N, Reighard G L, Gorina V M, Abbott A G. Microsatellite (SSR) analysis for assessment of genetic variability in apricot germplasm. Theoretical and Applied Genetics, 2003, 106: 435-444.

[3]Maghuly F, Fernandez E B, Ruthner S, Pedryc A, Laimer M. Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genetics & Genomes, 2005, 1: 151-165.

[4]Pedryc A, Ruthner S, Hermán R, Krska B, Hegedös A, Halász J. Genetic diversity of apricot revealed by a set of SSR markers from linkage group G1. Scientia Horticulturae, 2009, 121: 19-26.

[5]Liu W S, Liu N, Yu X H, Zhang Y P, Sun M, Xu M. Apricot germplasm resources and their utilization in China. Acta Horticulturae, 2010, 862: 45-49.

[6]Martínez-Mora C, Rodríguez J, Cenis J L, Ruiz-García L. Genetic variability among local apricots (Prunus armeniaca L.) from the Southeast of Spain. Spanish Journal of Agricultural Research, 2009, 7(4):855-868.

[7]Akp?nar A E, Koçal H, Ergül A, Kazan K, ?elli M E, Bak?r M, Aslanta? ?, Kaymak S, Sar?ba? R. SSR-based molecular analysis of economically important Turkish apricot cultivars. Genetics and Molecular Research, 2010, 9(1): 324-332.

[8]Bourguiba H, Khadari B, Krichen L, Trifi-Farah N, Santoni S, Audergon J M. Grafting versus seed propagated apricot populations: two main gene pools in Tunisia evidenced by SSR Markers and model-based Bayesian culustering. Genetica, 2010, 28(4): 578-587.

[9]Bourguiba H, Audergon J M, Krichen L, Trifi-Farah N, Mamouni A, Trabelsi S, D'Onofrio C, Asma B M, Santoni S, Khadari B. Loss of genetic diversity as a signature of apricot domestication and diffusion into the Mediterranean Basin. BMC Plant Biology, 2012, 12(1):49.

[10]刘威生, 冯静晨, 杨建民, 刘冬成, 张爱民, 李绍华. 杏ISSR反应体系的优化和指纹图谱的构建. 果树学报, 2005, 22(6): 626-629.

Liu W S, Feng J C, Yang J M, Liu D C, Zhang A M, Li S H. Optimization of ISSR reaction system and construction of cultivar finger-print in apricot. Journal of Fruit Science, 2005, 22(6): 626-629. ( in Chinese)

[11]He T M, Chen X S, Xu Z, Gao J S, Lin P J, Liu W, Liang Q, Wu Y. Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Ily Valley of West China. Genetic Resources and Crop Evolution, 2007, 54:563-572.

[12]何天明, 陈学森, 高疆生, 张大海, 徐麟, 吴燕. 新疆栽培杏群体遗传结构的SSR分析.园艺学报, 2006, 33(4): 809-812.

He T M, Chen X S, Gao J S, Zhang D H, Xu L, Wu Y. Using SSR markers to study population genetic structure of cultivated apricots native to Xinjiang. Acta Horticulture Sinica, 2006, 33(4): 809-812. ( in Chinese)

[13]苑兆和, 陈学森, 何天明, 冯建荣, 冯涛, 张春雨. 中国南疆栽培杏群体遗传结构的荧光AFLP分析. 遗传学报, 2007, 34(11): 1037- 1047.

Yuan Z H, Chen X S, He T M, Feng J R, Feng T, Zhang C Y. Population genetic structure in apricot (Prunus armeniaca L.) cultivars revealed by fluorescent-AFLP markers in southern Xinjiang, China. Journal of Genetics and Genomics, 2007, 34 (11 ):1037- 1047. ( in Chinese)

[14]张淑青, 刘冬成, 刘威生, 张爱民, 李绍华. 普通杏品种SSR遗传多样性分析. 园艺学报,2010, 37(1): 23-30.

Zhang S Q, Liu D C, Liu W S, Zhang A M, Li S H. Analysis of genetic diversities in apricot cultivars (Prunus armeniaca L.) with simple sequence repeat (SSR) markers. Acta Horticulturae Sinica, 2010, 37(1): 23-30. ( in Chinese)

[15]苑兆和, 陈学森, 张春雨, 何天明, 冯建荣, 冯涛. 普通杏群体遗传结构的荧光AFLP分析. 园艺学报, 2008, 35(3): 319-328.

Yuan Z H, Chen X S, Zhang C Y, He T M, Feng J R, Feng T. Population genetic structure in apricot (Armeniaca M ill.) revealed by fluorescent-AFLP markers. Acta Horticulturae Sinica, 2008, 35(3): 319-328. ( in Chinese)

[16]Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 2000, 18: 233-234.

[17]Lopes M S, Sefc K M, Laimer M, Da Câmara Machado A. Identification of microsatellite loci in apricot. Molecular Ecology Notes, 2002, 2(1): 24-26.

[18]Messina R, Lain O, Marrazzo M T, Cipriani G, Testolin R. New set of microsatellite loci isolated in apricot. Molecular Ecology Notes, 2004, 4(3):432-434.

[19]Vilanova S, Soriano J M,Lalli D A, Romero C, Abbott A G, Llácer G,Badenes M L. Development of SSR markers located in the G1 linkage group of apricot (Prunus armeniaca L.) using a bacterial. Molecular Ecology Notes, 2006, 6: 789-791.

[20]Lalli D A, Abbott A G, Badenes M L, Darmsteegt V, Polák J, Krška B, Salava J. A genetic linkage map for an apricot (Prunus armeniaca L.) BC1 population mapping Plum Pox Virus resistance. Tree Genetics & Genomes, 2008, 4: 481-493.

[21]Decroocq V, Fave M G, Hagen L, Bordenave L, Decroocq S. Development and transferability of apricot and grape EST microsatellite markers across taxa. Theoretical and Applied Genetics, 2003, 106: 912-922.

[22]Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences of the USA, 2004,101:9891-9896.

[23]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 2005, 14: 2611-2620.

[24]张军, 赵团结, 盖钧镒. 亚洲大豆栽培品种遗传多样性、特异性和群体分化研究. 中国农业科学, 2008, 41(11): 3511-3520.

Zhang J, Zhao T J, Gai J Y. Genetic diversity, specificity and population differentiation of soybean cultivars in Asia. Scientia Agricultura Sinica, 2008, 41(11): 3511-3520. ( in Chinese)

[25]吴承来, 张倩倩, 董炳雪, 李圣福, 张春庆. 我国部分玉米自交系遗传关系和遗传结构解析. 作物学报, 2010, 36(11): 1820-1831.

Wu C L, Zhang Q Q, Dong B X, Li S F, Zhang C Q. Analysis of genetic structure and genetic relationships of partial maize inbred lines in China. Acta Agronomica Sinica, 2010, 36(11): 1820-1831. ( in Chinese)

[26]章秋平, 刘威生, 刘宁, 张玉萍, 郁香荷, 孙猛, 徐铭. 普通杏初级核心种质资源的构建及评价. 果树学报, 2009, 26(6): 819-825.

Zhang Q P, Liu W S, Liu N, Zhang Y P, Yu X H, Sun M, Xu M. Establishment and evaluation of primary core collection of apricot (Prunus armeniaca L.) germplasm. Journal of Fruit Science, 2009, 26(6): 819-825. ( in Chinese)

[27]邱丽娟, 李英慧, 关荣霞, 刘章雄, 王丽侠, 常汝镇. 大豆核心种质和微核心种质的构建、验证与研究进展.作物学报, 2009, 35(4):571-579.

Qiu L J, Li Y H, Guan R X, Liu Z X, Wang L X, Chang R Z. Establishment, representative testing and research progress of soybean corecollection and mini core collection. Acta Agronomica Sinica, 2009, 35(4):571-579. (in Chinese)

[28]徐刚标. 植物群体遗传学.北京:科学出版社, 2009.

Xu G B. Population Genetics in Plant. Beijing:Science Publishing House, 2009. ( in Chinese)

[29]俞德浚.中国果树分类学.上海:科学与技术出版社, 1984:108-109.

Yu D J. Classification of Deciduous Fruit Trees. Shanghai:Science & Technology Press, 1984: 108-109.( in Chinese)

[30]刘有春, 陈伟之, 刘威生, 刘宁, 张玉萍, 刘硕. 仁用杏起源演化的孢粉学研究. 园艺学报, 2010, 37(9): 1377-1387.

Liu Y C, Chen W Z, Liu W S, Liu N, Zhang Y P, Liu S. Polynological study on the origin and systematic evolution of kernel-using apricots. Acta Horticulturae Sinica, 2010, 37(9): 1377-1387. ( in Chinese)

[31]宋喜娥, 李英慧, 常汝镇, 郭平毅, 邱丽娟. 中国栽培大豆微核心种质的群体结构与遗传多样性. 中国农业科学, 2010, 43(11): 2209-2219.

Song X E, Li Y H, Chang R Z, Guo P Y, Qiu L J. Population structure and genetic diversity of mini core collection of cultivated soybean (Glycine max Merr.) in China. Scientia Agricultura Sinica, 2010, 43(11): 2209-2219. ( in Chinese)
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[8] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[9] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[10] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[11] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[12] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[13] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[14] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[15] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!