Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (22): 4697-4704.doi: 10.3864/j.issn.0578-1752.2012.22.016

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Pathogenic Mechanism of Bombus patagiatus Infected by Nosema ceranae

 QIN  Hao-Ran, HE  Shao-Yu, WU  Jie, LI  Ji-Lian   

  1. 1.Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093;
    2.Eastern Bee Research Institute of Yunnan Agricultural University, Kunming 650201
  • Received:2012-03-09 Online:2012-11-15 Published:2012-05-22

Abstract: 【Objective】The objective of this study is to define the infectivity and pathogenic mechanism of Nosema ceranae to Bombus patagiatus. 【Method】 Traditional biology and ultrastructure under electronic microscope methods were used, and combined with the quantitative real-time PCR (qPCR) to explore the pathogenesis of N. ceranae to B. patagiatus. 【Result】 In the initial infection, the infected bees did not exhibit obvious external disease signs except decreased feeding and motor retardation. In the late period, the infected bees exhibited dispirited, weak and unable to fly. Through observation with light microscope, few N. ceranae but a lot of bacteria were found in the midgut of bees. N. ceranae mainly infected midgut of epithelial cells, the nuclear enlarged and out of shape, mitochondria become smaller even disintegrating and endoplasmic reticulum become disorders. However, the spores only infected the cytoplasm of the host instead of invading the nuclear, which lead to the disintegration of the mitochondria and cytoclasis. Quantitative analysis on RT-PCR showed that N. ceranae reached the highest level in the midgut and fat body 3-4 d after being infected and other organizations were barely detected.【Conclusion】N. ceranae can cross-species infect B. patagiatus and the pathological process starts with the pathological changes of intestinal cells, which lead to the cytoclasis and apoptosis.

Key words: Bombus patagiatus , Nosema ceranae , ultrastructure , qPCR

[1]Losey J E, Vaughan M. The economic value of ecological services provided by insects. BioScience, 2006, 56(4): 311-323.

[2]Breeze T D, Bailey A P, Balcombe K G, Potts S G. Pollination services in the UK: How important are honeybees? Agriculture, Ecosystems and Environment, 2011, 142(3/4): 137-143.

[3]Morse R, Calderone N W. The value of honey bees as pollinators of U.S. crops in 2000. Bee Culture, 2000, 128: 1-15.

[4]Higes M, Martín-Hernández R, Botías C, Bailón E G, González-Porto A V, Barrios L, Nozal M J D, Bernal J L, Jiménez J J, Palencia P G, Meana A. How natural infection by Nosema ceranae causes honeybee colony collapse. Environmental Microbiology, 2008, 10(10): 2659-2669.

[5]Chen Y P, Evans J D. Historical presence of Israeli acute paralysis virus in the United States. American Bee Journal, 2007, 147: 1027-1028.

[6]Chen Y P, Evans J D, Smith I B, Pettis J S. Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. Journal of Invertebrate Pathology, 2008, 97(2): 86-88.

[7]Goulson D. Effects of introduced bees on native ecosystems. Annual Review of Ecology, Evolution and Systematics, 2003, 34: 1-26.

[8]Fries I, Feng F, da Silva A, Slemenda S B, Pieniazek N J. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). European Journal of Protistology, 1996, 32(3): 356-365.

[9]梁正之. 对中蜂孢子虫病的初步探讨. 中国蜂业, 1980(4): 15-16

Liang Z Z. Nosema disease in honeybee (Apis cerana cerana). Apiculture in China, 1980(4): 15-16. (in Chinese)

[10]Singh Y. Nosema in Indian honey bee (Apis cerana indica). American Bee Journal, 1975, 115: 59.

[11]Yakobson B, Pothichot S, Wongsiri S. Possible transfer of Nosema apis from Apis mellifera to Apis cerana//Asian Honey Bees and Bee Mites. Bangkok, 1992.

[12]Fries I, Martín R, Meana A, García-Palencia P, Higes M. Natural infections of Nosema ceranae in European honey bees. Journal of Apicultural Research, 2006, 45(4): 230-233.

[13]Morse R A, Flottum K. Honey Bee Pests, Predators and Diseases, 3rd ed. Ohio: A. I Root Company, 1997: 59-76.

[14]Huang W F, Bocquet M, Lee K C, Sung I H, Jiang J H, Chen Y W, Wang C H. The comparison of rDNA spacer regions of Nosema ceranae isolates from different hosts and locations. Journal of Invertebrate Pathology, 2008, 97: 9-13.

[15]Plischuk S, Marthín-Hernández R, Prieto L, Lucía M, Botías C, Meana A, Abrahamovich A H, Lange C, Higes M. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environmental Microbiology Reports, 2009, 1(2): 131-135.

[16]陈文锋, 李继莲, Schmid-Hempel P, 吴  杰, 彭文君, 安建东. 我国四省区熊蜂中微孢子虫的自然感染率. 福建农林大学学报: 自然科学版, 2010, 39(3): 295-300.

Chen W F, Li J L, Schmid-Hempel P, Wu J, Peng W J, An J D. Natural infection rate of microsporidia in bumblebees from four different locations of China. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2010, 39(3): 295-300. (in Chinese)

[17]Li J L, Chen W F, Wu J, Peng W J, An J D, Schmid-Hempel P, Schmid-Hempel R. Diversity of Nosema associated with bumblebees (Bombus spp.) from China. International Journal for Parasitology, 2012, 42: 49-61.

[18]Deredec A, Courchamp F. Extinction thresholds in host-parasite dynamics. Annales Zoologici Fennici, 2003, 40: 115-130.

[19]Higes M, Garcia-Palencia P, Martin-Hernandez R, Meana A. Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). Journal of Invertebrate Pathology, 2007, 94: 211-217.

[20]黄少康, 杨守深, 王丽华, 付中民. 中蜂来源的微孢子虫对意蜂工蜂的侵染性研究. 中国蜂业, 2007, 58(1): 7-8, 12.

Huang S K, Yang S S, Wang L H, Fu Z M. Infectivity of microsporidium from Apis cerana cerana to Intalian honey bee worker. Apiculture of China, 2007, 58(1): 7-8, 12. (in Chinese)

[21]Chen Y P, Evans J D, Zhou L, Boncristiani H, Kimura K, Xiao T, Litkowski A M, Pettis J S. Asymmetrical coexistence of Nosema ceranae and Nosema apis in honey bees. Journal of Invertebrate Pathology, 2009, 101(3): 204-209.

[22]Fries I, Feng F. Cross infectivity of Nosema apis in Apis mellifera and Apis cerana//Proceedings of the Apimondia 34th International Apicultural Congress. Bucharest, Romania, 1995: 151-155.

[23]McIvor C A, Malone L A. Nosema bombi, a microsporidian pathogen of the bumble bee Bombus terrestris (L.). New Zealand Journal of Zoology, 1995, 22: 25-31.

[24]Van den Eijnde J, Van den Vette N. Nosema infection in honeybees (Apis mellifera L) and bumble bees (Bombus terrestris L). Proceedings of Section Experimental and Applied Entomology of the Netherlands Entomological Society, 1993, 4: 205-208.

[25]Shafer A B A, Williams G R, Shutler D, Rogers R E L, Stewart D T. Cophylogeny of Nosema (Microsporidia: Nosematidae) and bees (Hymenoptera: Apidae) suggests both cospeciation and host-switch. The Journal of Parasitology, 2009, 95(1): 198-203.

[26]刘  锋, 周  婷, 王  强, 代平礼. 东方蜜蜂微孢子虫 (N.  cernane)提纯方法优化//中国养蜂学会中蜂协作委员会2009年学术交流会论文集. 南宁, 2009: 28-31.

Liu F, Zhou T, Wang Q, Dai P L. The optimization of N. cernane purification method//Proceedings of China Beekeeping Society Bee Partnership Committee in 2009 Symposium. Nanning, 2009: 28-31. (in Chinese)

[27]李继莲, 吴  杰, 蒋  皖, 彭文君, 安建东, 黄家兴. 熊蜂微孢子虫对熊蜂的危害. 蜜蜂杂志, 2007(9): 5-8.

Li J L, Wu J, Jiang W, Peng W J, An J D, Huang J X. The harm of Nosema bombi to bumblebees. Journal of Bee, 2007(9): 5-8. (in Chinese)

[28]Antúnez K, Martín-Hernández R, Prieto L, Meana A, Zunino P, Higes M. Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental Microbiology, 2009, 11(9): 2284-2290.

[29]Li J L, Wu J, Peng W J, An J D, Guo Z B, Tong Y M. Nosema bombi, a microsporidian pathogen of the bumble bee Bombus lucorum. Journal of Apicultural Science, 2005, 49(1): 53-57.

[30]Huang W F, Jiang J H, Chen Y W, Wang C H. A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie, 2007, 38: 30-37.

[31]史景泉, 陈意生, 卞修武. 超微病理学. 北京: 化学工业出版社, 2005.

Shi J Q, Chen Y S, Bian X W. Ultrastructural Pathology. Beijing: Chemical Industry Press, 2005. (in Chinese)

[32]Klee J, Besana A M, Genersch E, Gisder S, Nanetti A, Tam D Q, Chinh T X, Puerta F, Ruz J M, Kryger P, Message D, Hatjina F, Korpela S, Fries I, Paxton R J. Widespread dispersal of the microsporidium Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. Journal of Invertebrate Pathology, 2007, 96: 1-10.

[33]Giersch T, Berg T, Galea F, Hornitzky M. Nosema ceranae infects honey bees (Apis mellifera) and contaminates honey in Australia. Apidologie, 2009, 40: 117-123.

[34]Paxton R J, Klee J, Korpela S, Fries I. Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie, 2007, 38: 558-565.

[35]Chen Y P, Evans J D, Smith I B, Pettis J S. Nosema ceranae is a long-presentand wide-spread microsporidean infection of the European honey bee (Apis mellifera) in the United States. Journal of Invertebrate Pathology, 2008, 97: 186-188.

[36]Invernizzia C, Abuda C, Tomascoa I H, Harriet J, Ramalloc G, Campá J, Katz H, Gardiol G, Mendoza Y. Presence of Nosema ceranae in honeybees (Apis mellifera) in Uruguay. Journal of Invertebrate Pathology, 2009, 101: 150-153.
[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[3] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[4] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[5] LI XiaoJing,ZHANG SiYu,LIU Di,YUAN XiaoWei,LI XingSheng,SHI YanXia,XIE XueWen,LI Lei,FAN TengFei,LI BaoJu,CHAI ALi. Establishment and Application of Rapid Quantitative Detection of Viable Plasmodiophora brassicae by PMAxx-qPCR Method [J]. Scientia Agricultura Sinica, 2022, 55(10): 1938-1948.
[6] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[7] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[8] ZHAO LiQun,QIU YanHong,ZHANG XiaoFei,LIU Hui,YANG JingJing,ZHANG Jian,ZHANG HaiJun,XU XiuLan,WEN ChangLong. The Detection of Citrullus lanatus Cryptic Virus Using TaqMan-qPCR Method [J]. Scientia Agricultura Sinica, 2021, 54(20): 4337-4347.
[9] MA LingLing,FENG Jia,WANG Jing,QI GuangHai,MA YouBiao,WU ShuGeng,ZHANG HaiJun,QIU Kai. The Changes of Eggshell Quality in the Laying Cycle of Hy-Line Brown Layers [J]. Scientia Agricultura Sinica, 2021, 54(17): 3766-3779.
[10] GAO YingBo,ZHANG Hui,SHAN Jing,XUE YanFang,QIAN Xin,DAI HongCui,LIU KaiChang,LI ZongXin. Effects of Pre-Silking High Temperature Stress on Yield and Ear Development Characteristics of Different Heat-Resistant Summer Maize Cultivars [J]. Scientia Agricultura Sinica, 2020, 53(19): 3954-3963.
[11] TIAN Yuan,WANG Li,LONG Feng,ZAN LinSen,CHENG Gong. Codon Optimization of Human Lysozyme and High-Efficiency Expression in Bovine Mammary Cells [J]. Scientia Agricultura Sinica, 2020, 53(18): 3805-3817.
[12] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
[13] ZHOU DingDing,SHI XiaoYu,WANG Jie,FAN YuanChan,ZHU ZhiWei,JIANG HaiBin,FAN XiaoXue,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Investigation of Competing Endogenous RNA Regulatory Network and Putative Function of Long Non-Coding RNAs in Nosema ceranae Spore [J]. Scientia Agricultura Sinica, 2020, 53(10): 2122-2136.
[14] FU ZhongMin,CHEN HuaZhi,LIU SiYa,ZHU ZhiWei,FAN XiaoXue,FAN YuanChan,WAN JieQi,ZHANG Lu,XIONG CuiLing,XU GuoJun,CHEN DaFu,GUO Rui. Immune Responses of Apis mellifera ligustia to Nosema ceranae Stress [J]. Scientia Agricultura Sinica, 2019, 52(17): 3069-3082.
[15] WANG HuiYing, XU MingGang, ZHOU BaoKu, MA Xiang, DUAN YingHua. Response and Driving Factors of Bacterial and Fungal Community to Long-Term Fertilization in Black Soil [J]. Scientia Agricultura Sinica, 2018, 51(5): 914-925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!