Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (10): 2122-2136.doi: 10.3864/j.issn.0578-1752.2020.10.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Investigation of Competing Endogenous RNA Regulatory Network and Putative Function of Long Non-Coding RNAs in Nosema ceranae Spore

ZHOU DingDing,SHI XiaoYu,WANG Jie,FAN YuanChan,ZHU ZhiWei,JIANG HaiBin,FAN XiaoXue,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui()   

  1. College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2019-10-23 Accepted:2019-11-26 Online:2020-05-16 Published:2020-05-22
  • Contact: Rui GUO E-mail:ruiguo@fafu.edu.cn

Abstract:

【Background】Long non-coding RNAs (lncRNAs) are a kind of non-coding transcripts with a length of more than 200 nt. LncRNAs can regulate gene expression at transcriptional level and post-transcriptional level via cis effect, trans effect or competing endogenous RNA (ceRNA) mechanism. LncRNAs have been proved to play pivotal roles in many biological processes such as growth and development.【Objective】The objective of this study is to perform detailed investigation and discussion of the regulatory manner of lncRNAs by combining small RNA (sRNA) omics dataset obtained in this work and previously gained lncRNA omics dataset, and to reveal the putative function of lncRNAs in Nosema ceranae spores.【Method】Here, purified spores of N. ceranae were sequenced using small RNA-seq (sRNA-seq), related bioinformatics software was used to conduct quality control of sequencing data. The upstream and downstream genes of N. ceranae lncRNAs were predicted based on the positional relationship between lncRNAs and mRNAs. Annotations of these upstream and downstream genes in GO and KEGG databases were carried out using Blast software. The lncRNA-miRNA and lncRNA-miRNA-mRNA regulatory networks were predicted using Target Finder software and then visualized with Cytoscape v3.7.2 software. The expression of partial lncRNAs, miRNAs and mRNAs within regulatory networks was validated with RT-PCR.【Result】In total, 16 597 883, 15 451 791 and 12 248 316 raw reads were obtained from sRNA-seq of N. ceranae spore samples, respectively, and after quality control, 15 608 370, 14 249 255 and 11 440 684 clean reads with a mean Q30 above 98.58% were gained, respectively. A total of 310 upstream and downstream genes of lncRNAs were predicted. These genes could be annotated to 35 functional terms associated with metabolic process, cell process, catalytic activity, binding and cells, etc. Additionally, these genes could be annotated to 56 metabolic pathways, including material metabolic pathways such as purine metabolism, carbon metabolism, pyruvate metabolism; and energy metabolic pathways including methane metabolism, oxidative phosphorylation, glycolysis/gluconeogenesis and so forth. The results indicated that corresponding lncRNAs could regulate the expression level of upstream and downstream genes through cis effect, thus participating in regulation of material and energy metabolisms as well as cell activities in N. ceranae spore. Furthermore, lncRNA-miRNA regulatory networks were constructed and analyzed, the result showed that MSTRG.3636.1, MSTRG.4498.1 and MSTRG.4883.1 could bind to four miRNAs including nce-miR-7729, nce-miR-7502, nce-miR-8639 and nce-miR-8565, suggesting that these three lncRNAs as ceRNAs could exert potential function in N. ceranae spore. LncRNA-miRNA-mRNA regulatory network analysis demonstrated that complex networks existed among them, miRNAs were located in the center, connecting lncRNAs and mRNAs, nce-miR-7502 and nce-miR-8639 could bind to the most mRNAs (28). MiRNAs targeting MSTRG.3636.1, MSTRG.4498.1 and MSTRG.4883.1 could target several mRNAs, indicating that these three lncRNAs might play a role via ceRNA mechanism, thus affecting the mechanism and vital activity in N. ceranae spore.【Conclusion】LncRNAs are likely to regulate the expression of upstream and downstream genes via cis effect, and indirectly affect the expression of target genes by absorbing miRNAs as ceRNAs, thus controlling basic activities in N. ceranae spore such as material metabolism and energy metabolism.

Key words: Nosema ceranae, non-coding RNA (ncRNA), long non-coding RNA (lncRNA), upstream and downstream genes, competing endogenous RNA (ceRNA), regulatory network

Table 1

Primers used in this study"

核酸ID
Nucleotide ID
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
预期目的片段
Product size (bp)
gene1439 1-F ATGTATCTTATGCCAACGC 382
1-R TGAATCTTTCCTACACCCT
gene565 2-F TCAAGCCTGTTAAGATGAC 499
2-R ACTACTTCTGGCGGTTTAT
gene1719 3-F ATAGGAGGTAAACATCAG 438
3-R ATAGTAAAGTTCAGTGCC
gene1366 4-F TTGAAGAAGGTGTCGCAGAAC 182
4-R AGCAGAGCCACATAAACAAGC
gene1360 5-F AAGAAGCCGAAACAACCC 101
5-R GTTAGCCGCATCCATAGC
gene1134 6-F TGTACGGTCTGGCTGCTTC 352
6-R GGACTTGGCTTTCCACTAA
gene1695 7-F GATACAGCCTCTTTGG 138
7-R GGAACAATAACCCTAAA
gene1563 8-F TGCCTACAATCAACTCTAAT 384
8-R CACCCAATACTTCAAATAAC
MSTRG.3636.1 9-F TAACTAGCCTACTCTATCCC 257
9-R TAAAAGCACTAACTACAACC
MSTRG.4883.1 10-F CTGACAGACCATAGTCGGCATA 128
10-R TCTACAATGATGGGCACAGGA
nce-miR-8565 11-L CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCCTAAAGA 67
11-F CGCGCCTTTAATTGTGAAACATG
nce-miR-7502 12-L CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAACTTGTC 66
12-F CGCGCCTAAAAACAAAAATGTA
nce-miR-7729 13-L CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCTAGGCC 62
13-F CGCGCCTAGTGATGGCTGT
- R CTCAACTGGTGTCGTGGA

Table 2

Overview of sRNA-seq datasets"

样品
Sample
原始读段
Raw reads
有效读段
Clean reads
99.9%的碱基正确率
Q30 (%)
NcS-1 16597883 15608370 98.61
NcS-2 15451791 14249255 98.65
NcS-2 12248316 11440684 98.58

Table 3

Summary of mapping information of sRNA-seq data to the reference genome of N. ceranae"

样品
Sample
未注释的有效读段
Unannotated clean reads
比对上的有效读段
Mapped clean reads
比对率
Mapping ratio (%)
NcS-1 14596118 7717280 52.87
NcS-2 12924265 7801135 60.36
NcS-3 10842971 6482422 59.78

Fig. 1

GO database annotation of upstream and downstream genes of lncRNAs in N. ceranae spore"

Fig. 2

KEGG database annotation of upstream and downstream genes of lncRNAs in N. ceranae spore"

Fig. 3

LncRNA-miRNA regulatory network in N. ceranae spore"

Fig. 4

Competing endogenous network of three lncRNAs in N. ceranae spore"

Table 4

Swissprot and Nr database annotations of target mRNAs of miRNAs targeted by lncRNAs in N. ceranae spore"

核酸ID
Nucleotide ID
Swissprot 数据库注释
Swissprot database annotation
Nr数据库注释
Nr database annotation
gene986 液泡氨基酸转运体5
Vacuolar amino acid transporter 5
假定蛋白NCER_101697
Hypothetical protein NCER_101697
gene783 负辅因子2复合亚基
Negative cofactor 2 complex subunit beta
假定蛋白NCER_101896
Hypothetical protein NCER_101896
gene565 丝氨酸/苏氨酸多聚蛋白激酶1
Serine/threonine-protein kinase plo1
假定蛋白NCER__102113
Hypothetical protein NCER_102113
gene2596 含C1778.09蛋白的TBC结构域
TBC domain-containing protein C1778.09
假定蛋白NCER_100108
Hypothetical protein NCER_100108
gene2543 TATA结合蛋白相关因子MOT1
TATA-binding protein-associated factor MOT1
假定蛋白NCER_100152
Hypothetical protein NCER_100152
gene2397 丝氨酸/苏氨酸蛋白激酶CDC5同源物
Cell cycle serine/threonine-protein kinase CDC5 homolog
假定蛋白NCER_100270
Hypothetical protein NCER_100270
gene2312 ERAD-相关E3泛素蛋白连接酶doa10
ERAD-associated E3 ubiquitin-protein ligase doa10
假定蛋白NCER_100375
Hypothetical protein NCER_100375
gene2178 转运蛋白sec24
Transport protein sec24
假定蛋白NCER_100510
Hypothetical protein NCER_100510
gene2014 转录相关蛋白1
Transcription-associated protein 1
假定蛋白NCER_100665
Hypothetical protein NCER_100665
gene1870 ERAD-相关E3泛素蛋白连接酶doa10
ERAD-associated E3 ubiquitin-protein ligase doa10
假定蛋白NCER_100805
Hypothetical protein NCER_100805
gene1766 赖氨酸- tRNA连接酶
Lysine-tRNA ligase
假定蛋白NCER_100909
Hypothetical protein NCER_100909
gene1719 T-复合体蛋白1亚基
T-complex protein 1 subunit alpha
假定蛋白NCER_100958
Hypothetical protein NCER_100958
gene1687 DNA-锚定 RNA 聚合酶 II 亚基RPB2
DNA-directed RNA polymerase II subunit RPB2
假定蛋白NCER_100983
Hypothetical protein NCER_100983
gene1678 锰-ATP转运酶4
Manganese-transporting ATPase 4
假定蛋白NCER_101005
Hypothetical protein NCER_101005
gene1677 3型蛋白酶体亚基
Probable proteasome subunit beta type-3
假定蛋白NCER_101004
Hypothetical protein NCER_101004
gene1662 微管蛋白γ
Tubulin gamma chain
假定蛋白NCER_101024
Hypothetical protein NCER_101024
gene1563 核输出蛋白BRL1
Nucleus export protein BRL1
假定蛋白NCER_101114
Hypothetical protein NCER_101114
gene1383 V型质子ATP酶催化亚基A
V-type proton ATPase catalytic subunit A
假定蛋白NCER_101294
Hypothetical protein NCER_101294
gene1366 长链脂肪酸CoA链2
Long chain fatty acid CoA ligase 2
假定蛋白NCER_101315
Hypothetical protein NCER_101315
gene1360 热休克蛋白hsp98
Heat shock protein hsp98
假定蛋白NCER_101322
Hypothetical protein NCER_101322
gene1348 丝氨酸/苏氨酸蛋白激酶MEC1同源物
Serine/threonine-protein kinase MEC1 homolog
假定蛋白NCER_101332
Hypothetical protein NCER_101332
gene1190 泛素羧基末端水解酶5
Ubiquitin carboxyl-terminal hydrolase 5
假定蛋白NCER_101487
Hypothetical protein NCER_101487
gene1180 苯丙氨酸-tRNA连接酶亚基
Phenylalanine-tRNA ligase beta subunit
假定蛋白NCER_101490
Hypothetical protein NCER_101490
gene1134 二磷酸异戊基丁二醇异构酶
Isopentenyl-diphosphate Delta-isomerase
假定蛋白NCER_101544
Hypothetical protein NCER_101544
newGene_142 60S核糖体蛋白L40(前体)
60S ribosomal protein L40 (precursor)
假定蛋白NCER_102067
Hypothetical protein NCER_102067

Fig. 5

RT-PCR verification of lncRNAs, target miRNAs and target mRNAs in N. ceranae spore"

[1] KEELING P J, FAST N M . Microsporidia: Biology and evolution of highly reduced intracellular parasites. Annual Review of Microbiology, 2002,56:93-116.
[2] HOLT H L, VILLAR G, CHENG W, SONG J, GROZINGER C M . Molecular, physiological and behavioral responses of honey bee ( Apis mellifera) drones to infection with microsporidian parasites. Journal of Invertebrate Pathology, 2018,155:14-24.
[3] KURZE C, CONTE Y L, KRYGER P, LEWKOWSKI O, MÜLLER T, MORITZ R F A . Infection dynamics of Nosema ceranae in honey bee midgut and host cell apoptosis. Journal of Invertebrate Pathology, 2018,154:1-4.
[4] ARNDT K M, REINES D . Termination of transcription of short noncoding RNAs by RNA polymerase II. Annual Review of Biochemistry, 2015,84:381-404.
[5] WU Z M, LIU X X, LIU L, DENG H L, ZHANG J J, XU Q, CEN B H, JI A M . Regulation of lncRNA expression. Cellular and Molecular Biology Letters, 2014,19(4):561-575.
[6] KOPP F, MENDELL J T . Functional classification and experimental dissection of long noncoding RNAs. Cell, 2018,172(3):393-407.
[7] DE BOER P, VOS H R, FABER A W, VOS J C, RAUÉ H A . Rrp5p, a trans-acting factor in yeast ribosome biogenesis, is an RNA-binding protein with a pronounced preference for U-rich sequences. RNA, 2006,12(2):263-271.
[8] YAN P, LUO S, LU J Y, SHEN X . Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Current Opinion in Genetics and Development, 2017,46:170-178.
[9] FAUQUENOY S, MIGEOT V, FINET O, YAGUE-SANZ C, KHOROSJUTINA O, EKWALL K, HERMAND D . Repression of cell differentiation by a cis-acting lincRNA in fission yeast. Current Biology, 2018,28(3):383-391.
[10] SARVER A L, SUBRAMANIAN S . Competing endogenous RNA database. Bioinformation, 2012,8(15):731-733.
[11] CESANA M, CACCHIARELLI D, LEGNINI I, SANTINI T, STHANDIER O, CHINAPPI M, TRAMONTANO A, BOZZONI I . A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011,147(2):358-369.
[12] CHAN W L, HUANG H D, CHANG J G . LncRNAMap: A map of putative regulatory functions in the long non-coding transcriptome. Computational Biology and Chemistry, 2014,50:41-49.
[13] KRISHNAN J, MISHRA R K . Emerging trends of long non-coding RNAs in gene activation. The FEBS Journal, 2014,281(1):34-45.
[14] GUTTMAN M, AMIT I, GARBER M, FRENCH C, LIN M F, FELDSER D, HUARTE M, ZUK O, CAREY B W, CASSADY J P, CABILI M N, JAENISCH R, MIKKELSEN T S, JACKS T, HACOHEN N, BERNSTEIN B E, KELLIS M, REGEV A, RINN J L, LANDER E S . Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009,458(7235):223-227.
[15] LIU J, JUNG C, XU J, WANG H, DENG S, BERNAD L, ARENAS-HUERTERO C, CHUA N H . Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. The Plant Cell, 2012,24(11):4333-4345.
[16] CHEN B, ZHANG Y, ZHANG X, JIA S L, CHEN S, KANG L . Genome-wide identification and developmental expression profiling of long noncoding RNAs during Drosophila metamorphosis. Scientific Reports, 2016,6:23330.
[17] LIU H, LI M Q, HE X Y, CAI S F, HE X K, LU X M . Transcriptome sequencing and characterization of ungerminated and germinated spores of Nosema bombycis. Acta Biochimica et Biophysica Sinica, 2016,48(3):246-256.
[18] GUO R, CHEN D F, XIONG C L, HOU C S, ZHENG Y Z, FU Z M, DIAO Q Y, ZHANG L, WANG H Q, HOU Z X, LI W D, KUMAR D, LIANG Q . Identification of long non-coding RNAs in the chalkbrood disease pathogen Ascospheara apis. Journal of Invertebrate Pathology, 2018,156:1-5.
[19] ATKINSON S R . The fission yeast non-coding transcriptome[D]. London: University College London, 2014.
[20] GUO G J, KANG Q Z, CHEN Q H, JING O Y, CHEN J L . Abstract 3543: A long noncoding RNA plays a critical role in Bcr-Abl-mediated cellular transformation. Cancer Research, 2014,74(19):3543.
[21] GUO R, CHEN D F, XIONG C L, HOU C S, ZHENG Y Z, FU Z M, LIANG Q, DIAO Q Y, ZHANG L, WANG H Q, HOU Z, KUMAR D . First identification of long non-coding RNAs in fungal parasite Nosema ceranae. Apidologie, 2018,49(5):660-670.
[22] 郭睿, 耿四海, 熊翠玲, 郑燕珍, 付中民, 王海朋, 杜宇, 童新宇, 赵红霞, 陈大福 . 意大利蜜蜂工蜂中肠发育过程中长链非编码RNA的差异表达分析. 中国农业科学, 2018,51(18):3600-3613.
GUO R, GENG S H, XIONG C L, ZHENG Y Z, FU Z M, WANG H P, DU Y, TONG X Y, ZHAO H X, CHEN D F . Differential expression analysis of long non-coding RNAs during the developmental process of Apis mellifera ligustica worker’s midgut. Scientia Agricultura Sinica, 2018,51(18):3600-3613. (in Chinese)
[23] LI J, MA W, ZENG P, WANG J, GENG B, YANG J, CUI Q . LncTar: A tool for predicting the RNA targets of long noncoding RNAs. Briefings in Bioinformatics, 2015,16(5):806-812.
[24] SMOOT M E, ONO K, RUSCHEINSKI J, WANG P L, IDEKER T . Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics, 2011,27(3):431-432.
[25] 郭睿, 杜宇, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 王海朋, 陈华枝, 耿四海, 周丁丁, 石彩云, 赵红霞, 陈大福 . 意大利蜜蜂幼虫肠道发育过程中的差异表达microRNA及其调控网络. 中国农业科学, 2018,51(21):4197-4209.
GUO R, DU Y, XIONG C L, ZHENG Y Z, FU Z M, XU G J, WANG H P, CHEN H Z, GENG S H, ZHOU D D, SHI C Y, ZHAO H X, CHEN D F . Differentially expressed microRNA and their regulation networks during the developmental process of Apis mellifera ligustica larval gut. Scientia Agricultura Sinica, 2018,51(21):4197-4209. (in Chinese)
[26] 杜宇, 童新宇, 周丁丁, 陈大福, 熊翠玲, 郑燕珍, 徐国钧, 王海朋, 陈华枝, 郭意龙, 隆琦, 郭睿 . 中华蜜蜂幼虫肠道响应球囊菌胁迫的microRNA应答分析. 微生物学报, 2019,59(9):1747-1764.
DU Y, TONG X Y, ZHOU D D, CHEN D F, XIONG C L, ZHENG Y Z, XU G J, WANG H P, CHEN H Z, GUO Y L, LONG Q, GUO R . MicroRNA responses in the larval gut of Apis cerana cerana to Ascosphaera apis stress. Acta Microbiologica Sinica, 2019,59(9):1747-1764. (in Chinese)
[27] BI F C, MENG X C, MA C, YI G J . Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing. BMC Genomics, 2015,16:776.
[28] CASSELLI T, QURESHI H, PETERSON E, PERLEY D, BLAKE E, JOKINEN B, ABBAS A, NECHAEV S, WATT J A, DHASARATHY A, BRISSETTE C A . MicroRNA and mRNA transcriptome profiling in primary human astrocytes infected with Borrelia burgdorferi. PLoS ONE, 2017,12(1):e0170961.
[29] JIANG X F, QIAO F, LONG Y L, CONG H Q, SUN H P . MicroRNA- like RNAs in plant pathogenic fungus Fusarium oxysporum f. sp. niveum are involved in toxin gene expression fine tuning. 3 Biotech, 2017, 7(5): Article 354.
[30] FANG S S, ZHANG L L, GUO J C, NIU Y W, WU Y, LI H, ZHAO L H, LI X Y, TENG X Y, SUN X H, SUN L, ZHANG M Q, CHEN R S, ZHAO Y . NONCODEV5: A comprehensive annotation database for long non-coding RNAs. Nucleic Acids Research, 2018,46(Database issue):D308-D314.
[31] QUEK X C, THOMSON D W, MAAG J L V, BARTONICEK N, SIGNAL B, CLARK M B, GLOSS B S, DINGER M E . LncRNAdb v2.0: Expanding the reference database for functional long noncoding RNAs. Nucleic Acids Research, 2015,43(Database issue):D168-D173.
[32] HARROW J, FRANKISH A, GONZALEZ J M, TAPANARI E, DIEKHANS M, KOKOCINSKI F, AKEN B L, BARRELL D, ZADISSA A, SEARLE S, BARNES I, BIGNELL A, BOYCHENKO V, HUNT T, KAY M, MUKHERJEE G, RAJAN J, DESPACIO- REYES G, SAUNDERS G, STEWARD C, HARTE R, LIN M, HOWALD C, TANZER A, DERRIEN T, CHRAST J, WALTERS N, BALASUBRAMANIAN S, PEI B, TRESS M, RODRIGUEZ J M, EZKURDIA I, VAN BAREN J, BRENT M, HAUSSLER D, KELLIS M, VALENCIA A, REYMOND A, GERSTEIN M, GUIGÓ R, HUBBARD T J . GENCODE: The reference human genome annotation for the ENCODE Project. Genome Research, 2012,22(9):1760-1774.
[33] GUO R, CAO G L, LU Y H, XUE R Y, KUMAR D, HU X L, GONG C L . Exogenous gene can be integrated into Nosema bombycis genome by mediating with a non-transposon vector. Parasitology Research, 2016,115(8):3093-3098.
[34] PALDI N, GLICK E, OLIVA M, ZILBERBERG Y, AUBIN L, PETTIS J, CHEN Y P, EVANS J D . Effective gene silencing in a microsporidian parasite associated with honeybee ( Apis mellifera) colony declines. Applied and Environmental Microbiology, 2010,76(17):5960-5964.
[35] HUANG Q, LI W, CHEN Y P, RETSCHNIG-TANNER G, YANEZ O, NEUMANN P, EVANS J D . Dicer regulates Nosema ceranae proliferation in honeybees. Insect Molecular Biology, 2019,28(1):74-85.
doi: 10.1111/imb.v28.1
[36] WANG K C, CHANG H Y . Molecular mechanisms of long noncoding RNAs. Molecular Cell, 2011,43(6):904-914.
doi: 10.1016/j.molcel.2011.08.018
[37] ZHAN S Y, DONG Y, ZHAO W, GUO J Z, ZHONG T, WANG L J, LI L, ZHANG H P . Genome-wide identification and characterization of long non-coding RNAs in developmental skeletal muscle of fetal goat. BMC Genomics, 2016,17:666.
[38] FRANZEN C, MULLER A, HARTMANN P, SALZBERGER B . Cell invasion and intracellular fate of Encephalitozoon cuniculi (Microsporidia). Parasitology, 2005,130(3):285-292.
[39] CHEN D F, CHEN H Z, DU Y, ZHOU D D, GENG S H, WANG H P, WAN J Q, XIONG C L, ZHENG Y Z, GUO R . Genome-wide identification of long non-coding RNAs and their regulatory networks involved in Apis mellifera ligustica response to Nosema ceranae infection. Insects, 2019,10(8):245.
doi: 10.3390/insects10080245
[40] YANG D L, PAN L X, CHEN Z Z, DU H H, LUO B, LUO J, PAN G Q . The roles of microsporidia spore wall proteins in the spore wall formation and polar tube anchorage to spore wall during development and infection processes. Experimental Parasitology, 2018,187:93-100.
[41] GISDER S, MÖCKEL N, LINDE A, GENERSCH E . A cell culture model for Nosema ceranae and Nosema apis allows new insights into the life cycle of these important honey bee-pathogenic microsporidia. Environmental Microbiology, 2011,13(2):404-413.
[42] NAKANISHI N, OZAWA K, YAMADA S . Enzymes of the glycolytic pathway-phosphofructokinase, pyruvate kinase and lactate dehydrogenase// Dynamic Aspects of Dental Pulp, 1990: 203-220.
[43] DOLGIKH V V, SOKOLOVA J J, ISSI I V . Activities of enzymes of carbohydrate and energy metabolism of the spores of the microsporidian, Nosema grylli. The Journal of Eukaryotic Microbiology, 1997,44(3):246-249.
doi: 10.1111/jeu.1997.44.issue-3
[44] ZIMMERMANN H . Extracellular ATP and other nucleotides— ubiquitous triggers of intercellular messenger release. Purinergic Signalling, 2015,12(1):25-57.
doi: 10.1007/s11302-015-9483-2
[45] HEINZ E, HACKER C, DEAN P, MIFSUD J, GOLDBERG A V, WILLIAMS T A, NAKJANG S, GREGORY A, HIRT R P, LUCOCQ J M, KUNJI E R S, EMBLEY T M . Plasma membrane-located purine nucleotide transport proteins are key components for host exploitation by microsporidian intracellular parasites. PLoS Pathogens, 2014,10(12):e1004547.
[46] SALMENA L, POLISENO L, TAY Y, KATS L, PANDOLFI P P . A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell, 2011,146(3):353-358.
doi: 10.1016/j.cell.2011.07.014
[47] POLISENO L, SALMENA L, ZHANG J, CARVER B, HAVEMAN W J, PANDOLFI P P . A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 2010,465(7301):1033-1038.
doi: 10.1038/nature09144
[48] WANG W T, YE H, WEI P P, HAN B W, HE B, CHEN Z H, CHEN Y Q . LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. Journal of Hematology and Oncology, 2016,9:117.
doi: 10.1186/s13045-016-0348-0
[49] 郭睿, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 杜宇, 王海朋, 耿四海, 周丁丁, 刘思亚, 陈大福 . 意大利蜜蜂工蜂中肠发育过程中的差异表达环状RNA及其调控网络分析. 中国农业科学, 2018,51(23):4575-4590.
doi: 10.3864/j.issn.0578-1752.2018.23.015
GUO R, CHEN H Z, XIONG C L, ZHENG Y Z, FU Z M, XU G J, DU Y, WANG H P, GENG S H, ZHOU D D, LIU S Y, CHEN D F . Analysis of differentially expressed circular RNAs and their regulation networks during the developmental process of Apis mellifera ligustica worker’s midgut. Scientia Agricultura Sinica, 2018,51(23):4575-4590. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.23.015
[1] FENG RuiRong,FU ZhongMin,DU Yu,ZHANG WenDe,FAN XiaoXue,WANG HaiPeng,WAN JieQi,ZHOU ZiYu,KANG YuXin,CHEN DaFu,GUO Rui,SHI PeiYing. Identification and Analysis of MicroRNAs in the Larval Gut of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(1): 208-218.
[2] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[3] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[4] CHEN HuaZhi,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Comparison and Potential Functional Analysis of Long Non-Coding RNAs Between Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2021, 54(2): 435-448.
[5] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[6] ZHOU DingDing, FAN YuanChan, WANG Jie, JIANG HaiBin, ZHU ZhiWei, FAN XiaoXue, CHEN HuaZhi, DU Yu, ZHOU ZiYu, XIONG CuiLing, ZHENG YanZhen, FU ZhongMin, CHEN DaFu, GUO Rui. Regulatory Function of Long Non-Coding RNAs in Ascosphaera apis [J]. Scientia Agricultura Sinica, 2021, 54(1): 224-238.
[7] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[8] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
[9] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[10] Rui GUO, SiHai GENG, CuiLing XIONG, YanZhen ZHENG, ZhongMin FU, HaiPeng WANG, Yu DU, XinYu TONG, HongXia ZHAO, DaFu CHEN. Differential Expression Analysis of Long Non-Coding RNAs During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2018, 51(18): 3600-3613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!