Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (20): 4337-4347.doi: 10.3864/j.issn.0578-1752.2021.20.008

• PLANT PROTECTION • Previous Articles     Next Articles

The Detection of Citrullus lanatus Cryptic Virus Using TaqMan-qPCR Method

ZHAO LiQun1(),QIU YanHong2,3(),ZHANG XiaoFei2,LIU Hui2,YANG JingJing2,ZHANG Jian2,3,ZHANG HaiJun2,3,XU XiuLan2,3,WEN ChangLong2,3()   

  1. 1Beijing Agricultural Extension Station, Beijing 100029
    2Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences/National Engineering Research Center for Vegetables, Beijing 100097
    3Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097
  • Received:2021-03-01 Accepted:2021-04-09 Online:2021-10-16 Published:2021-10-25
  • Contact: YanHong QIU,ChangLong WEN E-mail:zhaoliqun2009@163.com;qiuyanhong@nercv.org;wenchanglong@nercv.org

Abstract:

【Objective】Citrullus lanatus cryptic virus (CiLCV) is an important seed-transmitted virus that newly-emerging in watermelon in recent years. The objective of this study is to develop a detection method for CiLCV with real-time fluorescent quantitative PCR with TaqMan probes (TaqMan-qPCR), and to provide technical supports for the CiLCV detection from seeds and seedlings, and also for disease controlling in the future. 【Method】The CiLCV was found in Beijing watermelon producing area with high-throughput sequencing based on small RNAs. The full sequence of CiLCV-dsRNA1 and CiLCV-dsRNA2 was cloned and specific amplifying primers were designed to set up the detection method of the RT-PCR and TaqMan-qPCR. The other eight common viruses (cucumber green mottled mosaic virus, cucumber mosaic virus, Cucumis melo endornavirus, cucurbit chlorotic yellows virus, squash mosaic virus, tomato spotted wilt virus, watermelon mosaic virus, zucchini yellow mosaic virus) were used as control to analyze the method specificity. The standard curve of CiLCV was performed to evaluate the method sensitivity. Furthermore, the novel detection methods of TaqMan-qPCR and RT-PCR were used to inspect CiLCV in watermelon, cucumber, melon, and rootstock pumpkin seedlings that randomly collected from the main producing areas of cucurbits crop in North China. 【Result】The small RNAs data with high-quality were obtained, and 17 assembled contigs were found to share homology with CiLCV genomes after data analysis. The full-length of CiLCV-dsRNA1 and CiLCV-dsRNA2 was cloned with 1 603 and 1 466 nt in length, respectively, sharing the highest nt sequence identity (about 99.4% and 99.8%, respectively) with CiLCV that isolated from Henan Province (GenBank number KY081285, KY081284). The established RT-PCR for CiLCV showed a single amplified band, while the novel TaqMan-qPCR for detecting CiLCV showed good sensitivity and specificity, and could detect about 2×103 copies of CiLCV. The detection sensitivity of TaqMan-qPCR was about 100 times higher than that of RT-PCR. In addition, only one Beijing-watermelon sample was CiLCV positive, while the rest watermelon, melon, cucumber, and rootstock pumpkin seedlings were CiLCV negative, indicating that the virulence of seedlings in the main producing areas of cucurbits crop in China was not high. 【Conclusion】The established TaqMan-qPCR method for CiLCV detection has high specificity and sensitivity, and is suitable for rapid detection and accurate identification of CiLCV at ports and laboratories. In view of CiLCV can spread rapidly through seeds and seedlings, China should pay more attention to the detection of virulent seeds and seedlings to prevent the virulent seeds and seedlings flowing into the production process and then being transported and spread to the whole country, which may cause great economic losses to the industry.

Key words: Citrullus lanatus cryptic virus (CiLCV), real-time qPCR, TaqMan probe, cucurbits crop, seedling-borne disease

Table 1

The information of the main cucurbits crop seedlings for detection"

序号
Series
葫芦科作物种苗
Cucurbits seedling
来源
Origin
序号
Series
葫芦科作物种苗
Cucurbits seedling
来源
Origin
1 西瓜种苗Watermelon seedling 北京Beijing 7 黄瓜种苗Cucumber seedling 辽宁Liaoning
2 西瓜种苗Watermelon seedling 北京Beijing 8 甜瓜种苗Melon seedling 北京Beijing
3 西瓜种苗Watermelon seedling 北京Beijing 9 甜瓜种苗Melon seedling 辽宁Liaoning
4 西瓜种苗Watermelon seedling 山东Shandong 10 南瓜砧木种苗Rootstock pumpkin seedling 北京Beijing
5 黄瓜种苗Cucumber seedling 北京Beijing 11 南瓜砧木种苗Rootstock pumpkin seedling 山东Shandong
6 黄瓜种苗Cucumber seedling 山东Shandong 12 南瓜砧木种苗Rootstock pumpkin seedling 辽宁Liaoning

Table 2

The primer sequences for CiLCV detection"

引物名称 Primer name 序列 Sequence (5′-3′) 目的 Purpose
CiLCV-R1-F AGAATTTTCCCCCAGTCAAC CiLCV-dsRNA1全长克隆
Full length cloning of CiLCV-dsRNA1
CiLCV-R1-R AGAAGGTAAGGGTTAAATAAC
CiLCV-R2-F AGAATTTTCCCCCAGTCAAC CiLCV-dsRNA2全长克隆
Full length cloning of CiLCV-dsRNA2
CiLCV-R2-R AGAAGGTAAGGGTTAAATAAC
CiCLV-588-F TCCAGACGTTGGCTACACAC RT-PCR检测CiLCV
CiLCV detection using RT-PCR
CiCLV-588-R ATTGCGAACCTCTCAGGTGG
DCiLCV-F1 AGAGGCACAGATGATGGATTTGG TaqMan-qPCR检测CiLCV
CiLCV detection using TaqMan-qPCR
DCiLCV-P1 AGCAGACCTTGAATTGATTACGGGTTC
DCiLCV-R1 CATCCAGAAAGGCACTGCTCAT
DCiLCV-F2 TGCCATTGAGACTGCTGTTCC TaqMan-qPCR检测CiLCV
CiLCV detection using TaqMan-qPCR
DCiLCV-P2 AGTACGACATGTATGGGGTCGCGC
DCiLCV-R2 TCTGGGTACACTAACTGTCGGATC

Fig. 1

The symptoms of watermelon infected with CiLCV and length distribution of small RNAs sequencing A、B/C are the symptoms of watermelon infected with CiLCV;D is the length distribution of small RNAs sequencing"

Fig. 2

The detection of CiLCV by RT-PCR"

Fig. 3

Analysis of specificity (A) and sensitivity (B) of detecting CiLCV with two sets of probes The blue and red curves indicate the amplification results of primer set 1 and primer set 2 for CiLCV, respectively, while the green curves indicate the amplification results of the other eight viruses"

Fig. 4

The analysis of detection sensitivity of TaqMan-qPCR (A) and establishment of standard curve (B) for CiLCV The template concentration of solution 1-7 is 11.8×100-11.8×10-6 ng·μL-1"

Fig. 5

The detection sensitivity of RT-PCR for CiLCV"

Fig. 6

The detection of CiLCV in main cucurbits crop seedlings with TaqMan-qPCR (A) and RT-PCR (B)"

[1] SELA N, LACHMAN O, REINGOLD V, DOMBROVSKY A. A new cryptic virus belonging to the family Partitiviridae was found in watermelon co-infected with melon necrotic spot virus. Virus Genes, 2013, 47(2):382-384.
doi: 10.1007/s11262-013-0937-8
[2] XIN M, CAO M J, LIU W W, REN Y D, LU C T, WANG X F. The genomic and biological characterization of Citrullus lanatus cryptic virus infecting watermelon in China. Virus Research, 2017, 232:106-112.
doi: 10.1016/j.virusres.2017.02.009
[3] XIN M, ZHANG P P, LIU W W, REN Y D, CAO M J, WANG X F. The complete nucleotide sequence and genome organization of a novel betaflexivirus infecting Citrullus lanatus. Archives of Virology, 2017, 162(10):3239-3242.
doi: 10.1007/s00705-017-3461-7
[4] 王朵, 谢学文, 柴阿丽, 石延霞, 李宝聚. 甘肃省白菜死棵病病原菌鉴定及其融合群检测技术. 中国农业科学, 2019, 52(16):2787-2799.
WANG D, XIE X W, CHAI A L, SHI Y X, LI B J. Identification of the pathogen causing cabbage died in Gansu Province and detection of anastomosis groups. Scientia Agricultura Sinica, 2019, 52(16):2787-2799. (in Chinese)
[5] 王艳娇, 崔甜甜, 黄爱军, 陈洪明, 李中安, 周常勇, 宋震. 柑橘脉突病毒实时荧光定量RT-PCR检测体系的建立与应用. 园艺学报, 2016, 43(8):1613-1620.
WANG Y J, CUI T T, HUANG A J, CHEN H M, LI Z A, ZHOU C Y, SONG Z. Development and application of a quantitative RT-PCR approach for quantification of citrus vein enation virus. Acta Horticulturae Sinica, 2016, 43(8):1613-1620. (in Chinese)
[6] 丁天波, 刘晓蓓, 李洁, 魏可可, 褚栋. 番茄褪绿病毒实时荧光定量PCR检测技术的建立. 中国农业科学, 2018, 51(10):2013-2022.
DING T B, LIU X B, LI J, WEI K K, CHU D. Development of a real-time fluorescent quantitative PCR method for the detection of tomato chlorosis virus and its application. Scientia Agricultura Sinica, 2018, 51(10):2013-2022. (in Chinese)
[7] 孙炳剑, 陈清清, 袁虹霞, 施艳, 李洪连. SYBR Green I实时荧光定量PCR检测小麦纹枯病菌体系的建立和应用. 中国农业科学, 2015, 48(1):55-62.
SUN B J, CHEN Q Q, YUAN H X, SHI Y, LI H L. Establishment of SYBR Green I real-time PCR for quantitatively detecting Rhizoctonia cerealis in winter wheat. Scientia Agricultura Sinica, 2015, 48(1):55-62. (in Chinese)
[8] 李文学, 肖瑞刚, 吕苗苗, 丁宁, 石华荣, 顾沛雯. 葡萄霜霉病菌实时荧光定量PCR检测体系的建立和应用. 中国农业科学, 2019, 52(9):1529-1540.
LI W X, XIAO R G, LÜ M M, DING N, SHI H R, GU P W. Establishment and application of real-time PCR for quantitatively detecting Plasmopara viticola in Vitis vinifera. Scientia Agricultura Sinica, 2019, 52(9):1529-1540. (in Chinese)
[9] 年四季, 袁青, 殷幼平, 蔡俊, 王中康. 实时荧光定量PCR鉴定小麦矮腥黑穗菌技术研究. 中国农业科学, 2009, 42(12):4403-4410.
NIAN S J, YUAN Q, YIN Y P, CAI J, WANG Z K. Detection of Tilletia controversa Kühn by real-time quantitative PCR. Scientia Agricultura Sinica, 2009, 42(12):4403-4410. (in Chinese)
[10] 王念武, 王婷, 沈建国, 胡方平. 基于锁式探针的番茄溃疡病菌实时荧光PCR快速检测. 中国农业科学, 2014, 47(5):903-911.
WANG N W, WANG T, SHEN J G, HU F P. Rapid detection for Clavibacter michiganensis subsp. michiganensis using real-time PCR based on padlock probe. Scientia Agricultura Sinica, 2014, 47(5):903-911. (in Chinese)
[11] 贺振, 董婷婷, 吴伟文, 陈雯, 李良俊. 莲藕中甘薯潜隐病毒实时荧光定量PCR检测技术的建立及应用. 园艺学报, 2020, 47(7):1412-1420.
HE Z, DONG T T, WU W W, CHEN W, LI L J. Development and evaluation of a real-time fluorescent quantitative PCR assay for detection of sweet potato latent virus-lotus in lotus plants. Acta Horticulturae Sinica, 2020, 47(7):1412-1420. (in Chinese)
[12] AFONINA I A, REED M W, LUSBY E, SHISHKINA I G, BELOUSOV Y S. Minor groove binder-conjugated DNA probes for quantitative DNA detection by hybridization-triggered fluorescence. BioTechniques, 2002, 32(4):940-944, 946-949.
[13] ZHAO J R, BAI Y J, ZHANG Q H, WAN Y, LI D, YAN X J. Detection of hepatitis B virus DNA by real-time PCR using TaqMan-MGB probe technology. World Journal of Gastroenterology, 2005, 11(4):508-510.
doi: 10.3748/wjg.v11.i4.508
[14] 王英超, 甘琴华, 厉艳, 纪瑛, 吴兴海, 邵秀玲. 基于gpd基因的大蒜黑腐病菌实时荧光定量PCR鉴定技术. 中国农业科学, 2015, 48(2):390-397.
WANG Y C, GAN Q H, LI Y, JI Y, WU X H, SHAO X L. Detection of Embellisia allii using real-time quantitative PCR based on glyceraldehyde-3-phosphate dehydrogenase gene. Scientia Agricultura Sinica, 2015, 48(2):390-397. (in Chinese)
[15] ZHANG Y Q, LIU H S, WU X D, WANG X Z, LI J M, ZHAO Y G, LÜ Y, REN W J, GE S Q, WANG Z L. A novel real-time RT-PCR with TaqMan-MGB probes and its application in detecting BVDV infections in dairy farms. Journal of Integrative Agriculture, 2015, 14(8):1637-1643.
doi: 10.1016/S2095-3119(15)61134-0
[16] WU Q F, WANG Y, CAO M J, PANTALEO V, BURGYAN J, LI W X, DING S W. Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proceedings of the National Academy of Science of the United States of America, 2012, 109(10):3938-3943.
[17] 高利利, 孙国珍, 王勇, 高苇, 张春祥, 张安胜, 竺晓平. 天津地区番茄褪绿病毒的分子检测和鉴定. 华北农学报, 2015, 30(3):211-215.
GAO L L, SUN G Z, WANG Y, GAO W, ZHANG C X, ZHANG A S, ZHU X P. Molecular detection and identification of tomato chlorosis virus in Tianjin. Acta Agriculturae Boreali-Sinica, 2015, 30(3):211-215. (in Chinese)
[18] 黄爱军, 丁敏, 王莹, 苏华楠, 易龙. 柑橘叶斑驳病毒的RT-LAMP检测. 园艺学报, 2020, 47(11):2215-2222.
HUANG A J, DING M, WANG Y, SU H N, YI L. Establishment of RT-LAMP assay for detection of citrus leaf blotch virus. Acta Horticulturae Sinica, 2020, 47(11):2215-2222. (in Chinese)
[19] 张双纳, 李正男, 范旭东, 张尊平, 任芳, 胡国君, 董雅凤. 苹果褪绿叶斑病毒RT-LAMP检测方法的建立. 中国农业科学, 2018, 51(9):1706-1716.
ZHANG S N, LI Z N, FAN X D, ZHANG Z P, REN F, HU G J, DONG Y F. Establishment of RT-LAMP assay for detection of apple chlorotic leaf spot virus (ACLSV). Scientia Agricultura Sinica, 2018, 51(9):1706-1716. (in Chinese)
[20] 姜珊珊, 冯佳, 张眉, 王升吉, 辛志梅, 吴斌, 辛相启. 甘薯羽状斑驳病毒RT-LAMP快速检测方法的建立. 中国农业科学, 2018, 51(7):1294-1302.
JIANG S S, FENG J, ZHANG M, WANG S J, XIN Z M, WU B, XIN X Q. Development of RT-LAMP assay for rapid detection of sweet potato feathery mottle virus (SPFMV). Scientia Agricultura Sinica, 2018, 51(7):1294-1302. (in Chinese)
[21] 黄雯, 徐进, 张昊, 许景升, 丁伟, 冯洁. 植物青枯菌LAMP检测方法的建立. 中国农业科学, 2016, 49(11):2093-2102.
HUANG W, XU J, ZHANG H, XU J S, DING W, FENG J. Development of a LAMP approach for detection of Ralstonia solanacearum. Scientia Agricultura Sinica, 2016, 49(11):2093-2102. (in Chinese)
[22] 张永江, 辛言言, 李桂芬, 乾义柯. 葡萄A病毒RT-LAMP检测方法的建立. 中国农业科学, 2016, 49(1):103-109.
ZHANG Y J, XIN Y Y, LI G F, QIAN Y K. Development of a RT-LAMP assay for detection of grapevine virus A. Scientia Agricultura Sinica, 2016, 49(1):103-109. (in Chinese)
[23] 陈柳, 尚巧霞, 陈笑瑜, 邢冬梅, 冉策, 魏艳敏, 赵晓燕, 刘正坪. 草莓轻型黄边病毒RT-LAMP检测方法的建立. 中国农业科学, 2015, 48(3):613-620.
CHEN L, SHANG Q X, CHEN X Y, XING D M, RAN C, WEI Y M, ZHAO X Y, LIU Z P. Detection of strawberry mild yellow edge virus by RT-LAMP. Scientia Agricultura Sinica, 2015, 48(3):613-620. (in Chinese)
[24] 王永江, 周彦, 李中安, 苏华楠, 黄爱军, 唐科志, 周常勇. 柑橘衰退病毒RT-LAMP快速检测方法的建立. 中国农业科学, 2013, 46(3):517-524.
WANG Y J, ZHOU Y, LI Z A, SU H N, HUANG A J, TANG K Z, ZHOU C Y. A RT-LAMP assay for detection of citrus tristeza virus. Scientia Agricultura Sinica, 2013, 46(3):517-524. (in Chinese)
[25] PARIDA M, SANNARANGAIAH S, DASH P K, RAO P V L, MORITA K. Loop mediated isothermal amplification (LAMP): A new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Reviews in Medical Virology, 2008, 18(6):407-421.
doi: 10.1002/rmv.v18:6
[26] MORI Y, NAGAMINE K, TOMITA N, NOTOMI T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications, 2001, 289(1):150-154.
doi: 10.1006/bbrc.2001.5921
[27] 吴会杰, 秦碧霞, 陈红运, 彭斌, 蔡建和, 古勤生. 黄瓜绿斑驳花叶病毒西瓜、甜瓜种子的带毒率和传毒率. 中国农业科学, 2011, 44(7):1527-1532.
WU H J, QIN B X, CHEN H Y, PENG B, CAI J H, GU Q S. The rate of seed contamination and transmission of cucumber green mottle mosaic virus in watermelon and melon. Scientia Agricultura Sinica, 2011, 44(7):1527-1532. (in Chinese)
[28] 回文广, 赵廷昌, SCHAAD N W, 孙福在, 王建荣. 哈密瓜细菌性果斑病菌快速检测方法的建立. 中国农业科学, 2007, 40(11):2495-2501.
HUI W G, ZHAO T C, SCHAAD N W, SUN F Z, WANG J R. Establishment of rapid detection method for the pathogen of Hami melon fruit blotch. Scientia Agricultura Sinica, 2007, 40(11):2495-2501. (in Chinese)
[29] CHOI G S. Occurrence of two tobamovirus diseases in cucurbits and control measures in Korea. The Plant Pathology Journal, 2001, 17(5):243-248.
[30] MAULE A J, WANG D. Seed transmission of plant viruses: A lesson in biological complexity. Trends in Microbiology, 1996, 4(4):153-158.
doi: 10.1016/0966-842X(96)10016-0
[31] DINANT S, LOT H. Lettuce mosaic virus. Plant Pathology, 1992, 41:528-542.
doi: 10.1111/ppa.1992.41.issue-5
[1] TIAN Yuan,WANG Li,LONG Feng,ZAN LinSen,CHENG Gong. Codon Optimization of Human Lysozyme and High-Efficiency Expression in Bovine Mammary Cells [J]. Scientia Agricultura Sinica, 2020, 53(18): 3805-3817.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!