Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (18): 3805-3817.doi: 10.3864/j.issn.0578-1752.2020.18.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Codon Optimization of Human Lysozyme and High-Efficiency Expression in Bovine Mammary Cells

TIAN Yuan1(),WANG Li1,LONG Feng1,ZAN LinSen1,2,CHENG Gong1,2()   

  1. 1College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi
    2National Beef Cattle Improvement Center, Yangling 712100, Shaanxi
  • Received:2019-09-18 Accepted:2020-05-29 Online:2020-09-16 Published:2020-09-25
  • Contact: Gong CHENG E-mail:17319512949@163.com;chenggong@nwafu.edu.cn

Abstract:

【Objective】The aims of present study were to investigate the codon usage bias of seven milk protein genes in cattle mammary gland, to optimaize human lysozyme gene partially and totally based on codon usage bias of milk protein genes, and to evaluate the codon optimized effect of human lysozyme in multiple cells, so as to provide theoretical basis for increasing recombinant human lysozyme expression and developing new high-effect and safe recombinant human lysozyme. 【Method】The codon usage bias and high/low frequency codons of bovine major milk protein genes were confirmed through bioinformatics analysis by CodonW and EMBOSS software. Human lysozyme gene was partially (22 codons in the translation start region, named LYZop22) and totally (named LYZop) optimized according to the codon usage frequency of bovine major milk protein genes. The human lysozyme-luciferase fusion expression vector (pGL3-LYZcw/op22/op) and overexpression vector (pcDNA-LYZcw/op22/op) were constructed and transfected to cattle mammary epithelial cells (BMEC), cattle fibroblasts (BFFC) and mouse mammary epithelial cells for codon optimization effect evaluation by luciferase, real-time qPCR and western blot methods. 【Result】 The cattle milk protein genes prefer GC end, which the GC3s content was 0.537±0.062. However, the human lysozyme gene prefer AT end, and the GC3s content was 0.407. Moreover, differences in codon usage bias between casein protein genes and whey protein genes were found by cluster analysis. Five high frequency codons (RSCU>1.5) and seven low frequency codons (RSCU<0.5) were found in the bovine milk protein genes.The human lysozyme gene was optimized according to the bovine milk protein codon usage bias and evaluated by multiple cells transfection. The luciferase result showed that, the codon optimization could significantly increase the human lysozyme expression, which were 1.48-fold (P<0.01) and 1.30-fold (P>0.05) increased in BMEC and BFFC of LYZop22, respectively. While, 2.2-fold and 2.44-fold increase in the BMEC and BFFC of LYZop, respectively. Real-time qPCR result showed that, the mRNA levels of human lysozyme were increased in BMEC (2.08-fold, P<0.05) and BFFC (1.5-fold, P>0.05) of LYZop22. While the significantly increase in mRNA level of human lysozyme were found in the BMEC (17.8-fold , P<0.01) and BFFC (22-fold, P<0.01) of LYZop, the totally codon optimized type. In addition, there was a positive correlation between mRNA level and mRNA second structure stability. Western-blot result showed that, the expression of human lysozyme was effectively increased both in partially and totally codon optimized human lysozyme gene in the BMEC. Moreover, the effect on human lysozyme expression in totally codon optimization type was better than partially codon optimization type. 【Conclusion】 The codon usage bias and high/low frequency codons of bovine major milk protein genes were obtained, and the codon optimization of human lysozyme gene according bovine major milk protein gene codon usage bias could significantly improve the mRNA and protein level of human lysozyme, which would lay the foundation for producing recombinant human lysozyme effectively by bioreactor.

Key words: human lysozyme, cattle milk protein genes, codon optimization, luciferase analysis, real-time qPCR, Western-blot

Table 1

GenBank accession number and sequence information of cattle seven milk protein genes"

基因名称
Gene name
GenBank号
GenBank No.
序列长度
Length of CDS
alpha-s1 casein (CSN1S1) M33123 645 bp
alpha-s2 casein (CSN1S2) BC114773 669 bp
beta casein (CSN2) NM_181008 675 bp
kappa casein (CSN3) BC102120 573 bp
beta-lactoglogbulin (LGB) NM_173929 537 bp
alpha-lactalbumin (LALBA) M18780 429 bp
lactotransferrin (LTF) NM_180998 2127 bp

Table 2

Primers for the amplication of LYZcw, LYZop22 and LYZop"

引物名称
Primer name
基因名称
Gene name
引物序列
Primer sequence
产物长度
Product length
酶切位点
Restriction site
P-pGL3-cw LYZcw F:CCATGGCCATGAAGGCTCTCATTG
R:CCATGGTTACTCCACATCACTCCACAACCTTGAAC
459bp NcoI / Nco
P-pGL3-op22 LYZop22 F:CCATGGACCATGAAGGCCCTGATCGTGCTGGGAC
TGGTGCTGCTGTCTGTGACCGTGCAGGGCAAGGT
GTTTGAGAGGTGTGAGTTGGCCAGAACTCTG
R:CCATGGTCACTCCACAACCTTGAAC
459bp NcoI / NcoI
—— LYZop 全基因合成 Whole gene synthesis 459 bp NcoI / NcoI
P-pcDNA-cw LYZcw F:AAGCTTCCATGAAGGCTCTCATTG
R:CTCGAGCTCCACAACCTTGAAC
456 bp HindIII / XhoI
P-pcDNA-op22 LYZop22 F:CCATGGACCATGAAGGCCCTGATCG
R:CTCGAGCTCCACAACCTTGAAC
456bp HindIII / XhoI
P-pcDNA-op LYZop F:CCATGGACCATGAAGGCCCTGATCG
R:CTCGAG CACTCCACATCCCTGCACAT
456 bp HindIII / XhoI

Table 3

Codon composition analysis of bovine milk proteins and human lysozyme gene"

Bos taurus A3s T3s C3s G3s GC3s GC CAI ENc
αs1酪蛋白alpha-s1 casein 0.311 0.461 0.290 0.258 0.408 0.445 0.227 52.300
αs2酪蛋白alpha-s2 casein 0.253 0.453 0.340 0.335 0.484 0.417 0.317 49.970
β酪蛋白beta casein 0.201 0.421 0.342 0.298 0.505 0.512 0.234 48.750
κ-酪蛋白 kappa casein 0.399 0.412 0.243 0.194 0.341 0.430 0.240 58.250
乳球蛋白lactoglogbulin 0.079 0.147 0.574 0.519 0.825 0.586 0.349 36.270
α乳清白蛋白alpha-lactalbumin 0.283 0.349 0.395 0.337 0.526 0.441 0.281 55.510
乳铁蛋白lactotransferrin 0.170 0.242 0.410 0.449 0.671 0.561 0.262 47.650
Mean ± SEM 0.242±0.039 0.355±0.045 0.371±0.040 0.341±0.042 0.537±0.062 0.485±0.026 0.273±0.017 49.814±2.668
人溶菌酶 human lysozyme 0.3143 0.4032 0.2742 0.2323 0.407 0.473 0.193 50.270

Fig. 1

Correlation analysis of ENc vs GC3s of bovine milk protein genes The dot represents the ENc value corresponding to the GC3s value of different milk protein genes"

Table 4

Codon preference analysis of bovine milk protein genes"

密码子
Codon
氨基酸
Amino acid
频率/1000
Frequency/1000
个数
Number
同义密码子
相对使用度RSCU
密码子
Codon
氨基酸
Amino acid
频率/1000
Frequency/1000
个数
Number
同义密码子
相对使用度RSCU
GCA A 13.793 26 0.73 AAT N 19.629 37 0.96
GCC A 32.891 62 1.73 CCA P 17.507 33 1.06
GCG A 8.488 16 0.45 CCC P 19.629 37 1.19
GCT A 20.69 39 1.09 CCG P 4.244 8 0.26
TGC C 14.854 28 0.98 CCT P 24.403 46 1.48
TGT C 15.385 29 1.02 CAA Q 16.976 32 0.57
GAC D 22.281 42 1.09 CAG Q 42.44 80 1.43
GAT D 18.568 35 0.91 AGA R 5.836 11 1.06
GAA E 33.952 64 0.90 AGG R 12.732 24 2.32
GAG E 41.91 79 1.10 CGA R 2.122 4 0.39
TTC F 21.22 40 1.13 CGC R 3.183 6 0.58
TTT F 16.446 31 0.87 CGG R 6.897 13 1.26
GGA G 11.671 22 1.07 CGT R 2.122 4 0.39
GGC G 15.385 29 1.41 AGC S 14.324 27 1.30
GGG G 9.019 17 0.83 AGT S 13.263 25 1.20
GGT G 7.427 14 0.68 TCA S 7.427 14 0.67
CAC H 11.141 21 1.35 TCC S 14.854 28 1.34
CAT H 5.305 10 0.65 TCG S 2.122 4 0.19
ATA I 2.653 5 0.18 TCT S 14.324 27 1.30
ATC I 24.403 46 1.64 ACA T 11.141 21 0.84
ATT I 17.507 33 1.18 ACC T 18.037 34 1.36
AAA K 33.952 64 0.88 ACG T 6.366 12 0.48
AAG K 42.971 81 1.12 ACT T 17.507 33 1.32
CTA L 4.244 8 0.25 GTA V 6.897 13 0.41
CTC L 19.629 37 1.14 GTC V 15.915 30 0.95
CTG L 46.684 88 2.71 GTG V 28.117 53 1.68
CTT L 18.037 34 1.05 GTT V 15.915 30 0.95
TTA L 2.122 4 0.12 TAC Y 15.385 29 0.91
TTG L 12.732 24 0.74 TAT Y 18.568 35 1.09
AAC N 21.22 40 1.04

Fig. 2

Clustering analysis of bovine milk protein and human lysozyme genes based on RSCU value"

Table 5

Codon Optimization of human lysozyme gene"

LYZcw LYZop22 LYZop
1 ATG AAG GCT CTC ATT GTT
19 CTG GGG CTT GTC CTC CTT
37 TCT GTT ACG GTC CAG GGC
55 AAG GTC TTT GAA AGG TGT
73 GAG TTG GCC AGA ACT CTG
91 AAA AGA TTG GGA ATG GAT
109 GGC TAC AGG GGA ATC AGC
127 CTA GCA AAC TGG ATG TGT
145 TTG GCC AAA TGG GAG AGT
163 GGT TAC AAC ACA CGA GCT
181 ACA AAC TAC AAT GCT GGA
199 GAC AGA AGC ACT GAT TAT
217 GGG ATA TTT CAG ATC AAT
235 AGC CGC TAC TGG TGT AAT
253 GAT GGC AAA ACC CCA GGA
271 GCA GTT AAT GCC TGT CAT
289 TTA TCC TGC AGT GCT TTG
307 CTG CAA GAT AAC ATC GCT
325 GAT GCT GTA GCT TGT GCA
343 AAG AGG GTT GTC CGT GAT
361 CCA CAA GGC ATT AGA GCA
379 TGG GTG GCA TGG AGA AAT
397 CGT TGT CAA AAC AGA GAT
415 GTC CGT CAG TAT GTT CAA
433 GGT TGT GGA GTG TAA
1 ATG AAG GCC CTG ATC GTG
19 CTG GGA CTG GTG CTG CTG
37 TCT GTG ACC GTG CAG GGC
55 AAG GTG TTT GAG AGG TGT
73 GAG TTG GCC AGA ACT CTG
91 AAA AGA TTG GGA ATG GAT
109 GGC TAC AGG GGA ATC AGC
127 CTA GCA AAC TGG ATG TGT
145 TTG GCC AAA TGG GAG AGT
163 GGT TAC AAC ACA CGA GCT
181 ACA AAC TAC AAT GCT GGA
199 GAC AGA AGC ACT GAT TAT
217 GGG ATA TTT CAG ATC AAT
235 AGC CGC TAC TGG TGT AAT
253 GAT GGC AAA ACC CCA GGA
271 GCA GTT AAT GCC TGT CAT
289 TTA TCC TGC AGT GCT TTG
307 CTG CAA GAT AAC ATC GCT
325 GAT GCT GTA GCT TGT GCA
343 AAG AGG GTT GTC CGT GAT
361 CCA CAA GGC ATT AGA GCA
379 TGG GTG GCA TGG AGA AAT
397 CGT TGT CAA AAC AGA GAT
415 GTC CGT CAG TAT GTT CAA
433 GGT TGT GGA GTG TAA
1 ATG AAG GCC CTG ATC GTG
19 CTG GGA CTG GTG CTG CTG
37 TCT GTG ACC GTG CAG GGC
55 AAG GTG TTT GAG AGG TGC
73 GAG CTG GCC AGG ACT CTG
91 AAG AGG CTG GGA ATG GAT
109 GGC TAT AGG GGA ATC AGC
127 CTG GCC AAC TGG ATG TGT
145 CTG GCC AAG TGG GAG TCT
163 GGC TAT AAC ACC AGG GCC
181 ACC AAC TAT AAC GCC GGA
199 GAC AGG AGC ACC GAC TAT
217 GGC ATC TTT CAG ATC AAC
235 TCT AGG TAT TGG TGT AAC
253 GAC GGC AAG ACC CCT GGC
271 GCC GTG AAT GCC TGT CAC
289 CTG TCT TGT AGC GCC CTG
307 CTG CAG GAC AAC ATC GCC
325 GAT GCT GTG GCC TGC GCC
343 AAG AGG GTG GTG AGG GAT
361 CCT CAG GGA ATC AGG GCT
379 TGG GTG GCC TGG AGG AAT
397 AGG TGC CAG AAC AGG GAC
415 GTG AGG CAG TAT GTG CAG
433 GGA TGT GGA GTG TAA

Fig. 3

Schematic diagram of RNA second structure of codon optimized human lysozyme gene (1-100bp)"

Fig. 4

LYZcw, LYZop22 and LYZop electrophoresis detection"

Fig. 5

pGL3-LYZcw/op22/op vector identified by Nco1 enzyme digestion"

Fig. 6

The effect of codon optimization analysis of human lysozyme gene by luciferase"

Fig. 7

The effect of codon optimization analysis on human mRNA level of human lysozyme gene"

Fig. 8

The effect of codon optimization analysis on protein level of human lysozyme"

[1] 李永富, 孙震, 史锋, 张颖, 马金生, 蒋立凤. 溶菌酶对猪肉的保鲜作用. 上海农业学报, 2009,25(04):61-63.
LI Y F, SUN Z, SHI F, ZHANG Y, MA J S, JIANG L F. The effect of lysozyme on keeping chilled pork fresh. Acta Agriculturae Shanghai, 2009,25(04):61-63. (in Chinese)
[2] 朱军英, 崔立, 沈彦萍, 施彬. 溶菌酶对仔猪腹泻的预防作用. 中国畜牧杂志, 2009,45(03):40-42.
ZHU J Y, CUI L, SHEN Y P, SHI B. The preventive effect of lysozyme on diarrhea in piglets. Chinese Journal of Animal Science, 2009,45(03):40-42. (in Chinese)
[3] RAGLAND S A, CRISS A K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathogens, 2017,13(9):e1006512.
doi: 10.1371/journal.ppat.1006512 pmid: 28934357
[4] THELLIN O, ZORZI D, MELIN P, DELVENNE P, HEINEN E, ZORZI W, EL MOUALIJ B, QUATRESOOZ P. Hen egg white lysozyme is less active against Gardnerella vaginalis biofilm than human lysozyme. Microbiology Research International, 2018,6(1):1-6.
doi: 10.30918/MRI
[5] ERCAN D, DEMIRCI A. Recent advances for the production and recovery methods of lysozyme. Critical Reviews in Biotechnology, 2016,36(6):1078-1088.
doi: 10.3109/07388551.2015.1084263 pmid: 26383819
[6] MAGA E A, SHOEMAKER C F, ROWE J D, BONDURANT R H, ANDERSON G B, MURRAY J D. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. Journal of Dairy Science, 2006,89(2):518-524.
doi: 10.3168/jds.S0022-0302(06)72114-2 pmid: 16428620
[7] LIU X, WANG Y, TIAN Y, YU Y, GAO M, HU G, SU F, PAN S, LUO Y, GUO Z, QUAN F, ZHANG Y. Generation of mastitis resistance in cows by targeting human lysozyme gene to beta-casein locus using zinc-finger nucleases. Proceedings of the Royal Society B Biological Sciences, 2014,281(1780):20133368.
doi: 10.1098/rspb.2013.3368
[8] 熊显荣, 李文哲, 王丽君, 王勇胜, 苏建民, 华松, 张涌. 体细胞核移植技术生产转人溶菌酶基因(hLYZ)牛胚胎的研究. 农业生物技术学报, 2011,19(02):294-301.
XIONG X R, LI W Z, WANG L J, WANG Y S, SU J M, HUA S, ZHANG Y. Human lysozyme gene (hLYZ) transgenic bovine embryos produced by somatic cell nuclear transfer. Journal of Agricultural Biotechnology, 2011,19(02):294-301. (in Chinese)
[9] YANG B, WANG J, TANG B, LIU Y, GUO C, YANG P, YU T, LI R, ZHAO J, ZHANG L, DAI Y, LI N. Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle. PLoS One, 2011,6(3):e17593.
doi: 10.1371/journal.pone.0017593 pmid: 21436886
[10] LU D, LIU S, SHANG S, WU F, WEN X, LI Z, LI Y, HU X, ZHAO Y, LI Q, LI N. Production of transgenic-cloned pigs expressing large quantities of recombinant human lysozyme in milk. PLoS One, 2015,10(5):e0123551.
doi: 10.1371/journal.pone.0123551 pmid: 25955256
[11] YU H, CHEN J, LIU S, ZHANG A, XU X, WANG X, LU P, CHENG G. Large-scale production of functional human lysozyme in transgenic cloned goats. Journal of Biotechnology, 2013,168(4):676-683.
doi: 10.1016/j.jbiotec.2013.10.023
[12] MAURO V P, CHAPPELL S A. Considerations in the use of codon optimization for recombinant protein expression. Methods in Molecular Biology, 2018,1850:275-288.
doi: 10.1007/978-1-4939-9086-3_20 pmid: 30788833
[13] LI G W, OH E, WEISSMAN J S. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature, 2012,484(7395):538-541.
doi: 10.1038/nature10965
[14] HANSON G, COLLER J. Codon optimality, bias and usage in translation and mRNA decay. Nature Reviews Molecular Cell Biology, 2018,19(1):20-30.
doi: 10.1038/nrm.2017.91 pmid: 29018283
[15] CARNEIRO R L, REQUIAO R D, ROSSETTO S, DOMITROVIC T, PALHANO F L. Codon stabilization coefficient as a metric to gain insights into mRNA stability and codon bias and their relationships with translation. Nucleic Acids Research, 2019,47(5):2216-2228.
doi: 10.1093/nar/gkz033 pmid: 30698781
[16] GUSTAFSSON C, GOVINDARAJAN S, MINSHULL J. Codon bias and heterologous protein expression. Trends in Biotechnology, 2004,22(7):346-353.
doi: 10.1016/j.tibtech.2004.04.006
[17] COOPER C A, MAGA E A, MURRAY J D. Production of human lactoferrin and lysozyme in the milk of transgenic dairy animals: past, present, and future. Transgenic Research, 2015,24(4):605-614.
doi: 10.1007/s11248-015-9885-5 pmid: 26059245
[18] PLOTKIN J B, ROBINS H, LEVINE A J. Tissue-specific codon usage and the expression of human genes. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(34):12588-12591.
doi: 10.1073/pnas.0404957101 pmid: 15314228
[19] NEWMAN Z R, YOUNG J M, INGOLIA N T, BARTON G M. Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9. Proceedings of the National Academy of Sciences, 2016,113(10):e1362-e1371.
doi: 10.1073/pnas.1518976113
[20] KUDLA G, LIPINSKI L, CAFFIN F, HELWAK A, ZYLICZ M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biology, 2006,4(6):e180.
doi: 10.1371/journal.pbio.0040180 pmid: 16700628
[21] PLOTKIN J B, KUDLA G. Synonymous but not the same: the causes and consequences of codon bias. Nature Reviews Genetics, 2011,12(1):32-42.
doi: 10.1038/nrg2899 pmid: 21102527
[22] BOEL G, LETSO R, NEELY H, PRICE W N, WONG K H, SU M, LUFF J, VALECHA M, EVERETT J K, ACTON T B, XIAO R, MONTELIONE G T, AALBERTS D P, HUNT J F. Codon influence on protein expression in E. coli correlates with mRNA levels. Nature, 2016,529(7586):358-363.
doi: 10.1038/nature16509 pmid: 26760206
[23] HANSON G, COLLER J. Codon optimality, bias and usage in translation and mRNA decay. Nature Reviews Molecular Cell Biology, 2018,19(1):20-30.
doi: 10.1038/nrm.2017.91 pmid: 29018283
[24] WANG X, LI P, GUTENKUNST R N. Systematic effects of mRNA secondary structure on gene expression and molecular function in budding yeast. BioRxiv, 2017: 138792.
[25] ZUR H, TULLER T. Strong association between mRNA folding strength and protein abundance in S. cerevisiae. Embo Reports, 2012,13(3):272-277.
doi: 10.1038/embor.2011.262
[26] JAGODNIK J, CHIARUTTINI C, GUILLIER M. Stem-loop structures within mRNA coding sequences activate translation initiation and mediate control by small regulatory RNAs. Molecular Cell, 2017, 68(1): 158-170.e3.
doi: 10.1016/j.molcel.2017.08.015 pmid: 28918899
[27] TULLER T, ZUR H. Multiple roles of the coding sequence 5' end in gene expression regulation. Nucleic Acids Research, 2015,43(1):13-28.
doi: 10.1093/nar/gku1313 pmid: 25505165
[28] PAULUS M, HASLBECK M, WATZELE M. RNA stem-loop enhanced expression of previously non-expressible genes. Nucleic Acids Research, 2004,32(9):e78.
doi: 10.1093/nar/gnh076 pmid: 15163763
[29] MAO Y, LIU H, LIU Y, TAO S. Deciphering the rules by which dynamics of mRNA secondary structure affect translation efficiency in Saccharomyces cerevisiae. Nucleic Acids Research, 2014,42(8):4813-4822.
doi: 10.1093/nar/gku159 pmid: 24561808
[30] ZHOU Z, DANG Y, ZHOU M, LI L, YU C, FU J, CHEN S, LIU Y. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proceedings of the National Academy of Sciences, 2016,113(41):e6117.
doi: 10.1073/pnas.1606724113
[31] PRESNYAK V, ALHUSAINI N, CHEN Y H, MARTIN S, MORRIS N, KLINE N, OLSON S, WEINBERG D, BAKER K E, GRAVELEY B R, COLLER J. Codon optimality is a major determinant of mRNA stability. Cell, 2015,160(6):1111-1124.
doi: 10.1016/j.cell.2015.02.029 pmid: 25768907
[32] MITARAI N, SNEPPEN K, PEDERSEN S. Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization. Journal of Molecular Biology, 2008,382(1):236-245.
doi: 10.1016/j.jmb.2008.06.068 pmid: 18619977
[33] YU C H, DANG Y, ZHOU Z, WU C, ZHAO F, SACHS M S, LIU Y. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Molecular Cell, 2015,59(5):744-754.
doi: 10.1016/j.molcel.2015.07.018 pmid: 26321254
[34] KOUSSOUNADIS A, LANGDON S P, UM I H, HARRISON D J, SMITH V A. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Scientific Reports, 2015,5:10775.
doi: 10.1038/srep10775 pmid: 26053859
[1] ZHAO LiQun,QIU YanHong,ZHANG XiaoFei,LIU Hui,YANG JingJing,ZHANG Jian,ZHANG HaiJun,XU XiuLan,WEN ChangLong. The Detection of Citrullus lanatus Cryptic Virus Using TaqMan-qPCR Method [J]. Scientia Agricultura Sinica, 2021, 54(20): 4337-4347.
[2] ZHAO LeiLin, FAN Xin, NIE Xing, LIANG ChengZhen, ZHANG Rui, SUN GuoQing, MENG ZhiGang, LIN Min, WANG Yuan, GUO SanDui. Salt and Drought Tolerance in Heterologous-Expression of irrE Transgenic Tobacco [J]. Scientia Agricultura Sinica, 2017, 50(20): 3860-3870.
[3] . Clone and expression of broiler HSP70 gene in E. coli and preparation of HSP70 monoclonal antibody [J]. Scientia Agricultura Sinica, 2008, 41(7): 2154-2161 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!