Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (17): 3632-3638.doi: 10.3864/j.issn.0578-1752.2012.17.021

• RESEARCH NOTES • Previous Articles     Next Articles

Differential Protein Analysis of Kenaf Leaves Under Drought Stress

 QI  Jian-Min, JIANG  Hai-Qing, CHEN  Mei-Xia, XU  Jian-Tang, MA  Hong-Bo, FANG  Ping-Ping, LIN  Li-Hui, TAO  Ai-Fen, CHEN  Wei   

  1. 1.福建农林大学作物遗传育种与综合利用教育部重点实验室,福州 350002
    2.福建农林大学农业部东南黄红麻科学观测试验站,福州 350002
    3.江苏省海头高级中学,江苏连云港 222023
    4.宁德师范学院生物工程系,福建宁德 352100
    5.南京农业大学农学院/作物遗传与种质创新国家重点实验室,南京 210095
  • Received:2012-03-19 Online:2012-09-01 Published:2012-06-19

Abstract: 【Objective】 The analysis of stress-responsiveness in kenaf is an important route to the discovery of genes conferring stress tolerance. Proteomic analysis provides a broad view of plant responses to stress at the level of proteins.【Method】A drought-resistant kenaf variety GA42 has been identified as materials by setting the normal water supply and water control comparison test at seeding stage, stress-induced proteome changes were analyzed by two-dimensional gel electrophoresis.【Result】In total, 9 up-regulated protein spots reproducibly presented differential expression patterns on 2-DE maps. Six spots were identified and confirmed by MALDI-TOF-TOF MS, including 2 ribulose-1, 5-bisphosphate carboxylase or large chain (a key enzyme in the first major step of carbon fixation), 1 rubisco activase (a enzyme could regulate the activity of rubisco existing widely in plants), 1 dimethylmenaquinone methyltransferase (a coenzyme participates in methyl transfer reactions), 1 putative plastidic glutamine synthetase (a key enzyme participates in ammonia assimilation in higher plants), and 1 ATP synthase subunit β (an important enzyme that provides energy for the cell to use through the synthesis of ATP, which is the most commonly used “energy currency” of the cells from most organisms). 【Conclusion】 This study preliminarily showed these six protein spots are up-regulated which are associated with GA42 resistance under drought stress.

Key words: kenaf (Hibiscus cannabinus L.), drought stress, differential protein, 2-DE

[1]李宗道. 麻类的理论与技术. 上海: 上海科学技术出版社, 1980: 388-389.

Li Z D. Theory and Technology of Bast. Shanghai: Shanghai Scientific and Technical Press, 1980: 388-389. (in Chinese)

[2]程  舟, 鲛岛一彦, 陈家宽. 日本的红麻研究、加工和利用. 中国麻业, 2001, 23(3): 16-24.

Cheng Z, Kazuhiko S, Chen J K. The research, production and utilization of bast fiber in Japanese. Plant Fiber and Products, 2001, 23(3): 16-24. (in Chinese)

[3]Wasinger V C, Cordwell S J, Cerpa-Poljak A, Yan J X, Gooley A A, Wilkins M R, Duncan M W, Harris R, Williams K L, Humphey-Smith Dr. I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995, 16(1): 1090-1094.

[4]Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002, 2(9): 1131-1145.

[5]Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian S Y, Ober E S, Salekdeh G H. Proteome analysis of sugar beet leaves under drought stress. Proteomics, 2005, 5(4): 950-960.

[6]Costa P, Bahrman N, Frigerio J M, Kremer A, Plomion C. Water-deficit-responsive proteins in maritime pine. Plant Molecular Biology, 1998, 38(4): 587-596.

[7]Reviron M P, Vartanian N, Sallantin M, Huet J C, Pernollet J C, de Vienne D. Characterization of a novel protein induced by progressive or rapid drought and salinity in Brassica napus leaves. Plant Physiology, 1992, 100(3): 1486-1493.

[8]Leymarie J, Damerval C, Marcotte L, Combes V, Vartanian N. Two-dimensional protein patterns of Arabidopsis wild-type and auxin insensitive mutants, axr1, axr2, reveal interactions between drought and hormonal responses. Plant and Cell Physiology, 1996, 37(7): 966-975.

[9]Rey P, Pruvot G, Becuwe N, Eymery F, Rumeau D, Peltier G. A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants. The Plant Journal, 1998, 13(1): 97-107.

[10]Riccardi F, Gazeau P, de Vienne D, Zivy M. Protein changes in response to progressive water deficit in maize quantitative variation and polypeptide identification. Plant Physiology, 1998, 117(4): 1253-1263.

[11]Pandey A, Mann M. Proteomics to study genes and genomes. Nature, 2000, 405: 837-846.

[12]王朝云, 揭雨成. 水分胁迫对红麻生理特性和产量的影响. 作物学报, 1995, 21(6): 746-751.

Wang C Y, Jie Y C. Effects of water stress on physiological characteristics and yield in kenaf. Acta Agronomica Sinica, 1995, 21(6): 746-751. (in Chinese)

[13]李  燕, 蔡建秀, 郑少泉, 陈思思, 陈清西, 陈  伟. “红核子”龙眼胚胎发育不同时期的蛋白质组分析. 热带作物学报, 2006, 27(4): 64-68.

Li Y, Cai J X, Zheng S Q, Chen S S, Chen Q X, Chen W. Analysis of proteins during different embryo development stages of Longan “Red Seed”. Chinese Journal of Tropical Crops, 2006, 27(4): 64-68. (in Chinese)

[14]Dai Z, Liu Y K, Cui J F, Shen H L, Chen J, Sun R X, Zhang Y, Zhou X W, Yang P Y, Tang Z Y. Identification and analysis of altered α1,6-fucosylated glycoproteins associated with hepatocellular carcinoma metastasis. Proteomics, 2006, 6(21): 5857-5867.

[15]Vincent D, Ergul A, Bohlman M C, Tattersall E A R, Tillett R L, Wheatley M D, Woolsey R, Quilici D R, Joets J, Schlauch K, Schooley D A, Cushman J C, Cramer G R. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. Journal of Experimental Bontany, 2007, 58(7): 1873-1892.

[16]兰  涛, 汪  斌, 童志军, 谢端端, 吴为人, 祁建民. 红麻种质资源耐旱性的初步鉴定研究. 中国麻业科学, 2007, 29(6): 322-325.

Lan T, Wang B, Tong Z J, Xie D D, Wu W R, Qi J M. Identification research on drought tolerance of kenaf germplasm resources. Plant Fiber Sciences in China, 2007, 29(6): 322-325. (in Chinese)

[17]Pankovic D, Sakac Z, Kevresan S, Plesnicar M. Acclimation to long-term water deficit in the leaves of two sunflower hybrids: Photosynthesis, electron transport and carbon metabolism. Journal of Experiment Botany, 1999, 50(330): 128-138.

[18]Ali G M, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress. Journal of Proteome Research, 2006, 5(2): 396-403.

[19]Rey P, Cuine S, Eymery F, Garin J, Court M, Jacquot J P, Rouhier N, Broin M. Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. The Plant Journal, 2005, 41: 31-42.

[20]霍晨敏, 赵宝存, 葛荣朝, 沈银柱, 黄占景. 小麦耐盐突变体盐胁迫下的蛋白质组分析. 遗传学报, 2004, 31(12): 1408-1414.

Huo C M, Zhao B C, Ge R C, Shen Y Z, Huang Z J. Proteomic analysis of the salt tolerance mutant of wheat under salt stress. Acta Genetica Sinica, 2004, 31(12): 1408-1414. (in Chinese)

[21]Parker R, Flowers T J, Moore A L, Harpham N V J. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. Journal of Experimental Botany, 2006, 57(5): 1109-1118.

[22]Parry M A J, Andralojc P J, Khan S, Lea P J, Keys A J. Rubisco activity: effects of drought stress. Annals of Botany, 2002, 89(7): 833-839.

[23]李常健, 林清华, 张楚富, 李泽松, 彭  进, 朱英国, Peng Shao-bing, Bennett John. NaCl对水稻谷氨酰胺合成酶活性及同工酶的影响. 武汉大学学报: 自然科学版, 1999, 4(4): 497-500.

Li C J, Lin Q H, Zhang C F, Li Z S, Peng J, Zhu Y G, Peng S B, Bennett J. Effect of NaCl stress on activity and isozymes of glutamine synthetase in rice plants. Journal of Wuhan University: Natural Science Edition, 1999, 4(4): 497-500. (in Chinese)

[24]姜海青. 红麻干旱胁迫的蛋白质组学初步研究[D]. 福州: 福建农林大学, 2008.

Jiang H Q. Preliminary proteomic study of kenaf under drought stress[D]. Fuzhou: Fujian Agriculture and Forestry University, 2008. (in Chinese)

[25]Hoshi H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Talabe T, Takabe T. Enhanced tolerance to salt stress in transgenic rice that overexpress cholorplast glutamine sythetase. Plant Molecular Biology, 2000, 43: 103-111.

[26]Stock D, Leslie A G W, Walker J E. Molecular architecture of the rotary motor in ATP synthasee. Science, 1999, 286(5445): 1700-1705.

[27]Yoshida M, Muneyuki E, Hisabori T. ATP synthase-a marvelous rotary engine of the cell. Nature Reviews Molecular cell Biology, 2001, 2(9): 669-677.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[3] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[4] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[5] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[6] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[7] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[8] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[9] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[10] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[11] LIU WenJuan,CHANG LiJuan,YUE LiJie,SONG Jun,ZHANG FuLi,WANG Dong,WU JiaWei,GUO LingAn,LEI ShaoRong. Response of Non-Photochemical Quenching in Bundle Sheath Chloroplasts of Two Maize Hybrids to Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1532-1544.
[12] HaiYan ZHANG,BeiTao XIE,BaoQing WANG,ShunXu DONG,WenXue DUAN,LiMing ZHANG. Effects of Drought Treatments at Different Growth Stages on Growth and the Activity of Antioxidant Enzymes in Sweetpotato [J]. Scientia Agricultura Sinica, 2020, 53(6): 1126-1139.
[13] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[14] WANG JinQiang,LI SiPing,LIU Qing,LI Huan. Mechanism of Spraying Growth Regulators to Alleviate Drought Stress of Sweet Potato [J]. Scientia Agricultura Sinica, 2020, 53(3): 500-512.
[15] SI XuYang,JIA XiaoWei,ZHANG HongYan,JIA YangYang,TIAN ShiJun,ZHANG Ke,PAN YanYun. Genomic Profiling and Expression Analysis of Phosphatidylinositol- specific PLC Gene Families Among Chinese Spring Wheat [J]. Scientia Agricultura Sinica, 2020, 53(24): 4969-4981.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!