Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (17): 3624-3631.doi: 10.3864/j.issn.0578-1752.2012.17.020

• RESEARCH NOTES • Previous Articles     Next Articles

Functional Analysis of Cyclophilin (GhCYP1) in Gossypium hirsutum

 WU  Li, LI  Yan-Jun, ZHANG  Xin-Yu, WANG  Ya-Qin, SUN  Jie   

  1. 1.石河子大学生命科学学院,新疆石河子 832003
    2.石河子大学农学院/新疆兵团绿洲生态农业重点实验室,新疆石河子 832003
  • Received:2012-03-26 Online:2012-09-01 Published:2012-05-28

Abstract: 【Objective】The objective of this study is to investigate the effects of cotton GhCYP1 gene on drought tolerance of tobacco.【Method】The plant expression vector of GhCYP1 gene was constructed by using gateway cloning technology and transformed into tobacco based on Agrobacterium tumerficiens-mediated transformation approach. Transgenic tobacco plants fused the target genes were generated. Wild type (WT), transgenic lines L1 and L2 of tobacco were used to measure the relative content of chlorophyll in leaf discs, relative water content, malonyldialdehyde content and relative electrical conductivity in plants.【Result】Compared with WT, transgenic tobacco plants form a stronger root system. Under the conditions of water stress, the leaf chlorophyll was less affected in transgenic plants which had obviously higher leaf chlorophyll content in leaf discs. The 3rd day after water stress,relative water content, the malonyldialdehyde content and relative electrical conductivity in L1 and L2 transgenic lines showed no difference with that in WT. After 13 d under water stress conditions, relative water content in transgenic lines was significantly higher than in WT, but the malonyldialdehyde content and relative electrical conductivity were significantly lower than in WT. 【Conclusion】These results suggested that WT tobacco plants were greatly affected under water stress conditions, and the transgenic plants were less affected. Overexpression of GhCYP1 improved the drought tolerance of transgenic tobacco plants.  

Key words: cotton, tobacco, GhCYP1 gene, genetic transformation, drought tolerance

[1]刘金定, 叶武威, 樊宝相. 我国棉花抗逆研究及其利用. 中国棉花, 1998, 25(3): 5-6.

Liu J D, Ye W W, Fan B X. Cotton resilience and utilization in China. Chinese Cotton, 1998, 25(3): 5-6. (in Chinese)

[2]Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought from genes to the whole plant. Functional Plant Biology, 2003, 30: 239-264.

[3]Galat A. Peptidylproline cis-trans-isomerases: Immunophilins. European Journal of Biochemistry, 1993, 216(3): 689-707.

[4]Chen A P, Wang G L, Qu Z L, Lu C X, Liu N, Wang F, Xia G X. Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Reports, 2007, 26(2): 237-245.

[5]Kong H Y, Lee S C, Hwang B K. Expression of pepper cyclophilin gene is diferentially regulated during the pathogen infection and abiotic stress conditions. Physiological and Molecular Plant Pathology, 2001, 59(4): 189-199.

[6]Cho E K, Kim M. A red algal cyclophilin has an effect on development and growth in Nicotiana tabacum. Plant Physiology and Biochemistry, 2008, 46(10): 868-874.

[7]Ruan S L, Ma H S, Wang S H, Fu Y P, Xin Ya, Liu W Z, Wang F, Tong J X, Wang S Z, Chen H Z. Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC Plant Biology, 2011, 11(34): 2-15.

[8]Kim S K, You YN, Park J C, Joung Y, Kim B G, Ahn J C, Cho H S. The rice thylakoid luminal cyclophilin OsCYP20-2 confers enhanced environmental stress tolerance in tobacco and Arabidopsis. Plant Cell Reports, 2012, 31(2): 417-426.

[9]郭  芳, 李艳军, 张新宇, 吴  莉, 孙  杰. 棉花亲环素基因(GhCYP1)克隆及在干旱胁迫下的表达分析. 分子植物育种, 2010, 8(2): 265-270.

Guo F, Li Y J, Zhang X Y, Wu L, Sun J. Cotton cyclophilin gene GhCYP1 cloning and expression analysis under drought stress. Molecular Plant Breeding, 2010, 8(2): 265-270. (in Chinese)

[10]Buchholz W G, Harrishaller L, DeRose R T. Cyclophillins are encoded by a small gene family in rice. Plant Molecular Biology, 1994, 25: 837-843.

[11]Oh K, Ivanchenko M G, White T J, Lomax T L. The diageotropica gene of tomato encodes a cyclophilin: A novel player in auxin signaling. Planta, 2006, 224(1): 133-144.

[12]Marivet J, Frendo P, Burkard G. DNA sequence analysis of a cyclophiln gene from maize: Developmental expression and regulation by salicylic acid. Molecular Genetics and Genomics ,1995, 247(2): 222-228.

[13]Gan P H, Shan W, Blackman L M, Hardham A R. Characterization of cyclophilin-encoding genes in phytophthora. Molecular Genetics and Genomics, 2009, 281(2): 565-578.

[14]Godoy A V, Lazzaro A S, Casalongue C A, San S B. Expression of a Solanum tuberosum cyclophilin gene is regulated by fungal infection and abiotic stress conditions. Plant Science, 2000, 152: 123-134.

[15]Kan Y C, Liu S W, Guo Z J. Characterization of a cyclophilin cDNA from soybean cell. Acta Botanica Sinice, 2002, 44(2): 173-176.

[16]蒋建雄, 张天真. 利用CTAB/酸酚法提取棉花组织总RNA. 棉花学报, 2003, 15(3): 166-167.

Jiang J X, Zhang T Z. Use of CTAB/acid phenol extraction of total RNA of cotton. Cotton Science, 2003, 15(3): 166-167. (in Chinese)

[17]Horsch R B, Fry J, Hoffman N L, Wallroth M, Eichholtx D, Rogers S G, Fraley R T. A simple and general method for transferring genes into plants. Science, 1985, 227: 1229-1231.

[18]奥斯伯,布伦特. 精编分子生物学实验指南. 北京: 北京科学出版社, 1999.

Aosbo F M, Bulut R. Molecular Biology Laboratory Manual for Fine. Beijing: Beijing Science Press, 1999. (in Chinese)

[19]刘  宁. 盐芥(Thellungiella halophila)耐盐基因的规模化功能性筛选及小立宛藓(Physcomitrella patens)耐逆基因PpDBF1的分离和功能鉴定[D]. 北京: 中国科学院, 2007.

Liu N. Functional screening of salt-stress related genes from Thellungiella halophila and characterization of stress-inducible gene PpDBF1 in Physcomitrella patens[D]. Beijing:  Chinese Academy of Sciences, 2007.

[20]李合生. 植物生理生化实验原理和技术. 北京: 北京高等教育出版社, 2003: 164-263.

Li H S. Plant Physiological and Biochemical Principles and Experimental Techniques. Beijing: Beijing Higher Education Press, 2003: 164-263. (in Chinese)

[21]Dominguez-Solis J R, He Z, Lima A, Ting J, Buchanan B B, Luan S. A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts. Proceedings of the National Academy of Sciences of the USA, 2008, 105(42): 16386-16391.

[22]Cho E K, Kim M. A red algal cyclophilin has an effect on development and growth in Nicotiana tabacum. Plant Physiology and Biochemistry, 2008(10): 868-874.

[23]Li H, He Z, Lu G, Lee S C, Alonso J, Ecker J R, Luan S. A WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsos. The Plant Cell, 2007, 19(8): 2403-2416.

[24]朱维琴, 吴良欢, 陶勤南. 作物根系对干旱胁迫逆境的适应性研究进展. 土壤与环境, 2002, 11(4): 430-433.

Zhu W Q, Wu L H, Tao Q N. Advances in the studies on crop root against drought stress. Soil and Environmental Sciences, 2002, 11(4): 430-433. (in Chinese)

[25]Zhu C F, Wang Y W, Li Y B, Bhatti K H, Tian Y C, Wu J H. Overexpression of a cotton cyclophilin gene(GhCyp1) in transgenic tobacco plants confers dual tolerance to salt stress and Pseudomonas syringae pr.. Tabaci Infection, 2011, 49: 1264-1271.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[3] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[4] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[5] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[6] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[7] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[8] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[9] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[10] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[11] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[12] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[13] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[14] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[15] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!