Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (17): 3463-3472.doi: 10.3864/j.issn.0578-1752.2012.17.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Silencing of Cytochrome P450 in Sitobion avenae and Myzus persicae Through RNA Interference

 WANG  Hui, ZHANG  Min, ZHANG  Xiao-Hong, XIA  Lan-Qin   

  1. 1.西北农林科技大学生命科学学院,陕西杨陵712100
    2.中国农业科学院作物科学研究所,北京100081
  • Received:2012-03-28 Online:2012-09-01 Published:2012-05-16

Abstract: 【Objective】Silencing of cytochrome P450 in S. avenae and M. persicae through RNA interference by feeding on artificial diet containing double-stranded RNA (dsRNA).【Method】 Fragments of cytochrome P450 in S. avenae and M. persicae were obtained by PCR. The dsRNA of the conserved sequence of cytochrome P450 from S. avenae and M. persicae were synthesized by dsRNA synthesis kit. dsRNA was added to the final concentration of 0, 3, 5, and 7.5 ng•μL-1 in aphid artificial diet, respectively. Three replicates were set up for each experimental group. The number of surviving aphids was counted after 2, 4, 6, and 8 days of feeding. The expression level of target genes were analyzed by real-time fluorescence quantitative PCR.【Result】Cytochrome P450 fragments were cloned from the cDNA of S. avenae and M. persicae, the homology of the two genes was 90.1%. The mortality of aphids increased along with the increased dsRNA concentration as time went on. Total RNA were extracted from aphids fed by dsRNA at concentration of 7.5 ng•μL-1 and collected from different time periods. The results of real-time fluorescence quantitative PCR showed that the target genes were silenced significantly. 【Conclusion】The expression level of cytochrome P450 in S. avenae and M. persicae which fed by the dsRNA of the conserved sequences of cytochrome P450, were suppressed, and thus led to the death of aphids.

Key words: Sitobion avenae, Myzus persicae, cytochrome P450, RNAi, dsRNA

[1]Xia L Q, Ma Y Z, He Y, Jones H D. GM wheat development in China: Current status and challenges to commercialization. Journal of Experimental Botany, 2012, 63(5): 1785-1790.

[2]Awmack C S, Harrington R. Elevated CO2 affects the interactions between aphid pests and host plant flowering. Agricultural and Forest Entomology, 2000, 2: 57-61.

[3]Alessandra F, Shihshieh H. Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnology, 2010, 8: 655-677.

[4]Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature, 2004, 431: 343-349.

[5]Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 2002, 110: 563-574.

[6]杨中侠, 吴青君, 王少丽, 文礼章, 徐宝云, 张  杰, 张友军. 利用RNAi技术沉默小菜蛾类钙粘蛋白基因. 昆虫学报, 2009, 52(8): 832-837.

Yang Z X, Wu Q J, Wang S L, Wen L Z, Xu B Y, Zhang J, Zhang Y J. Silencing of cadherin-like gene in the diamondback moth, Plutella xylostella (Lepidoptera:Plutellidae), using RNAi technique. Acta Entomologica Sinica, 2009, 52(8): 832-837. (in Chinese)

[7]Baum J A, Bogaert T, Clinton W, Heck G R, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 2007, 25: 1322-1326.

[8]Mao Y B, Cai W J, Wang J W, Hong G J, Tao X Y, Wang L J, Huang Y P, Chen X Y. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 2007, 25(11): 1307-1313.

[9]Mao Y B, Tao X Y, Xue X Y, Wang L J, Chen X Y. Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Research, 2011, 20: 665-673.

[10]Zha W, Peng X, Chen R, Du B, Zhu L, He G. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNAinterference in the Hemipteran insect Nilaparvata lugens. PLoS ONE, 2011, 6(5): e20504.

[11]Pitino M, Coleman A D, Maffei M E, Ridout C J, Hogenhout S A. Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE, 2011, 6(10): e25709.

[12]Bernhardt R. Cytochromes P450 as versatile biocatalysts. Journal of  Biotechnology, 2006, 124(1): 128-145.

[13]唐  涛, 刘雪源, 邱立红. RNA干扰及其对昆虫抗药性相关基因的沉默研究. 棉花学报, 2010, 22(6): 617-624.

Tang T, Liu X Y, Qiu L H. RNA interference and its application on silencing of insecticide-resistant genes in insects. Cotton Science, 2010, 22(6): 617-624. (in Chinese)

[14]李彩霞, 高丽锋, 高玲玲, 李润植. 全纯人工营养液饲养蚜虫的研究. 山西农业大学学报, 1997, 17(3): 225-228.

Li C X, Gao L F, Gao L L, Li R Z. Study on the rearing of aphids on a artificially holidic diets. Journal of Shanxi Agricultural University, 1997, 17(3): 225-228. (in Chinese)

[15]纠  敏, 刘树生. 利用人工饲料饲养蚜虫的技术. 华东昆虫学报, 2004, 13(2): 102-109.

Jiu M, Liu S S. Aphid rearing with artificial diets. Entomological Journal of East China, 2004, 13(2): 102-109. (in Chinese)

[16]Mutti N S, Park Y, Reeck G R. RNAi knockdown of a salivary transcript leadingto lethality in the pea aphid, Acyrthosiphon pisum. Journal of Insect Science, 2006, 6: 1-7.

[17]Kumar M, Gupta G P, Rajam M V. Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval growth and its life cycle. Journal of Insect Physiology, 2009, 55: 273-278.

[18]Arakane Y, Muthukrishnan S, Kramer K J. The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized forsynthesis of epidermal cuticle and midgut peritrophic matrix. Insect Molecular Biology, 2005, 14(5): 453-463.

[19]Hilder V A, Powell K S, Gatehouse A M R, Gatehouse J A, Gatehouse L N, Shi Y, Hamilton W D O, Merryweather A, Newell C A, Timans J C, Peumans W J, Van D E, Boulter D. Expression of snowdrop lectin in transgenic tobaccoplants results in added protection against aphids. Transgenic Research, 1995, 4: 18-25.

[20]Rao K V, Rathore K S, Hodges T K, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown D P, Powell K S, Spence J, Gatehouse A M R, Gatehouse J A. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. The Plant Journal, 1998, 15: 469-477.

[21]Tang K, Tinjuangjun P, Xu Y, Sun X, Gatehouse J A, Ronald P C, Qi H., Lu X, Chiristou P, Kohli A. Particle-bomba rdment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and s ap-sucking insect pests. Planta, 1999, 208: 552-563.

[22]Stöger E, Williams S, Christou P, Down R E, Gatehouse J A. Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: Effects on predation by the grain aphid Sitobion avenae. Molecular Breeding, 1999, 5: 65-73.

[23]徐琼芳, 田  芳, 陈  孝, 侯文胜, 李连城, 杜丽璞, 徐惠君, 辛志勇. 转基因抗虫小麦中sgna基因的遗传分析及抗虫性鉴定. 作物学报, 2004, 30(5): 475-480.

Xu Q F, Tian F, Chen X, Hou W S, Li L C, Du L P, Xu H J, Xin Z Y. Inheritance of sgna gene and insect-resistant activity in transgenic wheat. Acta Agronomica Sinica, 2004, 30(5): 475-480. (in Chinese)

[24]Birch A N E, Geoghegan I E, Majerus M E N, McNicol J W, Hackett C A, Gatehouse A M R, Gatehouse J A. Tritrophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin foraphid resistance. Molecular Breeding, 1999, 5: 75-83.

[25]Price D G R, Gatehouse J A. RNAi-mediated crop protection against insects. Trends in Biotechnology, 2008, 26: 393-400.

[26]Xu W, Han Z. Cloning and phylogenetic analysis of sid-1-like genes from aphids. Journal of Insect Science, 2008, 8(30): 1-6. 

[27]Wang Y, Zhang H, Li H, Miao X. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS ONE, 2011, 6(4): e18644.

[28]Kamath R S, Fraser A G, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Bot N, Moreno S, Sohrmann M, WelchmanD P, Zipperlen P, Ahringer J. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003, 421: 231-236.

[29]Newmark P A, Reddien P W, Cebria F, Sanchez A. Ingestion of bacterially expressed doubled-stranded RNA inhibits gene expression in planarians. Proceedings of the National Academy of Sciences of the USA, 2003, 100: 11861-11865.

[30]Timmons L, Court D L, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene, 2001, 263(1/2): 103-112.

[31]Turner C T, Davy M W, MacDiarmid R M, Plummer K M, Birch N P, Newcomb R D. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Molecular Biology, 2006, 15(3): 383-391.

[32]Nicholson R H, Nicholson A W. Molecular characterization of amouse cDNA encoding Dicer, a ribonuclease Ⅲ ortholog involved in RNA interference. Mammalian Genome, 2002, 13(2): 67-73.

[33]Hammond E. An RNA-directed nuclease mediates post-transcriptonal gene silencing in Drosophila cells. Nature, 2000, 404: 4985-4990.
[1] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[2] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[3] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[4] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[5] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[6] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[7] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[8] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[9] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[10] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[11] FU ChaoRan, LI YaZi, WU Han, ZHAO Dan, GUO Wei, GUO XiaoChang. Cloning, Expression and Functional Analysis of SeDuox from Spodoptera exigua [J]. Scientia Agricultura Sinica, 2021, 54(18): 3881-3891.
[12] SHI Xin,LI Sha,WANG ZhiMin,FU KaiYun,FU WenJun,JIANG WeiHua. Resistance Monitoring to Thiamethoxam and Expression Analysis of Cytochrome P450 Genes in Leptinotarsa decemlineata from Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(14): 3004-3016.
[13] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[14] YU WeiDong,PAN BiYing,QIU LingYu,HUANG Zhen,ZHOU Tai,YE Lin,TANG Bin,WANG ShiGui. The Structure Characteristics and Biological Functions on Regulating Trehalose Metabolism of Two NlTret1s in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2020, 53(23): 4802-4812.
[15] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!