Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (16): 3265-3272.doi: 10.3864/j.issn.0578-1752.2012.16.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Impacts of Salt Stress on Characteristics of Photosynthesis and Chlorophyll Fluorescence of Sorghum Seedlings

 SUN  Lu, ZHOU  Yu-Fei, LI  Feng-Xian, XIAO  Mu-Ji, TAO  Ye, XU  Wen-Juan, HUANG  Rui-Dong   

  1. 沈阳农业大学农学院,沈阳 110866
  • Received:2012-03-19 Online:2012-08-15 Published:2012-05-02

Abstract: 【Objective】 The impacts of salt stress on the photosynthesis and chlorophyll fluorescence parameters of sorghum seedlings were studied for providing a foundation for sorghum cultivation, breeding and artificial regulation of salt stress.【Method】 Salt tolerant cultivar (Liaoza 15) and salt sensitive cultivar (Longza 11) were incubated in the nutrient solution at humidity of 60%, light/dark of 12 h/12 h, illumination of 134 μmol•m-2•s-1 and 28℃/25℃ of day/night. NaCl was added into the solution at 3-leaf stage and NaCl concentration levels at 0, 50, 100, 150 and 200 mmol•L-1, respectively. The response of sorghum seedlings to NaCl stress was assessed by measuring the photosynthesis and chlorophyll fluorescence parameters of seedlings. 【Result】 Low NaCl concentration (50 mmol•L-1) increased the chlorophyll content, and high NaCl concentration (100-200 mmol•L-1) reduced the content substantially. Salt stress reduced Pn, Gs, Tr, Fm, Fv/Fo, Fv/Fm, Fv′/Fm′ and qP, and increased Fo and NPQ. Low NaCl concentration (50 mmol•L-1) reduced Ci, and high NaCl concentration (100-200 mmol•L-1) increased it. The adverse impact of salt stress on Liaoza 15 was less than on Longza 11. 【Conclusion】 The small reduction in net photosynthesis rate caused by 50 mmol•L-1 NaCl stress was considered to be a result of non-stomatal restriction; but increased stomatal restriction with increased NaCl concentration resulted in more severe reductions in photosynthesis. Under salt stress, salt tolerant cultivar could protect the photosynthetic organs more effectively than salt sentitive cultivar and thus improve the production of sorghum in salt affected areas.

Key words: sorghum, salt stress, photosynthesis, chlorophyll fluorescence

[1] Zhu J K. Plant salt tolerance. Trends in Plant Science, 2001, 6(2): 66-71.

[2] Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 2003, 91(5): 503-527.

[3] 贾亚雄, 李向林, 袁庆华, 万里强, 孟 芳. 披碱草属野生种质资源苗期耐盐性评价及相关生理机制研究. 中国农业科学, 2008, 41(10): 2999-3007.

Jia Y X, Li X L, Yuan Q H, Wan L Q, Meng F. Evaluation of salt-tolerance and the related physiological characteristics of wild elymus spp. Scientia Agriculturs Sinica, 2008, 41(10): 2999-3007. (in Chinese)

[4] Khalid N, Aqsa T, Iqra K H, Abdul M. Induction of salt tolerance in two cultivars of sorghum (Sorghum bicolor L.) by exogenous application of proline at seedling stage. World Applied Sciences Journal, 2010, 10 (1): 93-99.

[5] Bethke P C, Drew M C. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiology, 1992, 99: 219-226.

[6] Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell and Environment, 1993, 16(1): 15-24.

[7] Sultana N, Ikeda T, Itoh R. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Experimental Botany, 1999, 42(3): 211-220.

[8] Qiu N W, Lu Q T, Lu C M. Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytologist, 2003, 159: 479-486.

[9] Koyro H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 2006, 56:136-146.

[10] 葛江丽, 石 雷, 谷卫彬, 唐宇丹, 张金政, 姜闯道, 任大明. 盐胁迫条件下甜高粱幼苗的光合特性及光系统Ⅱ功能调节. 作物学报, 2007, 33(8):1272-1278.

Ge J L, Shi L, Gu W B, Tang Y D, Zhang J Z, Jiang C D, Ren D M. Photosynthetic characteristics and the regulation of photosystemⅡ function in salt-stressed sweet sorghum seedlings. Acta Agronomica Sinica, 2007, 33(8): 1272-1278. (in Chinese)

[11] Liu J, Shi D C. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica, 2010, 48(1): 127-134.

[12] Baker N R. A possible role for photosystem Ⅱ in environmental perturbations of photosynthesis. Physiologia Plantarum, 1991, 81(4): 563-570.

[13] Jeanjean R, Matthijs H C P, Onana B, Havaux M, Joset F. Exposure of the cyanobacterium synechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant and Cell Physiology, 1993, 34(7): 1073-1079. 

[14] Allakhverdiev S I, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N. Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and  translation of psbA genes in Synechocystis. Plant Physiology, 2002, 130: 1443-1453.

[15] Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S I. Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta, 2007, 1767: 414-421.

[16] Melgar J C, Guidi L, Remorini D, Agati G, Degl’innocenti E, Castelli S, Baratto M C, Faraloni C, Tattini M. Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance. Tree Physiology, 2009, 29(9): 1187-1198.

[17] 郭书奎, 赵可夫. NaCl胁迫抑制玉米幼苗光合作用的可能机理. 植物生理学报, 2001, 27(6): 461-466.

Guo S K, Zhao K F. The possible mechanisms of NaCl inhibit photosynthesis of maize seedlings. Acta Phytophysiologica Sinica, 2001, 27(6): 461-466. (in Chinese)

[18] Iqbal M, Ashraf M. Changes in growth, photosynthetic capacity and ionic relation in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regulation, 2005, 46(1): 19-30.

[19] 孙 璐, 周宇飞, 汪 澈, 肖木辑, 陶 冶, 许文娟, 黄瑞冬. 高粱品种萌发期耐盐性筛选与鉴定. 中国农业科学, 2012, 45(9): 1714-1722. 

Sun L, Zhou Y F, Wang C, Xiao M J, Tao Y, Xu W J, Huang R D. Screening and identification of sorghum cultivars for salinity tolerance during germination. Scientia Agricultura Sinica, 2012, 45(9): 1714-1722. (in Chinese)

[20] 张宪政. 作物生理研究法. 北京: 农业出版社, 1992.

Zhang X Z. Methods for Studies of Crop Physiology. Beijing: Agricultural Press, 1992. (in Chinese)

[21] Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology, 2000, 43(1): 103-111.

[22] 裘丽珍, 黄有军, 黄坚钦, 夏国华, 龚 宁. 不同耐盐性植物在盐胁迫下的生长与生理特性比较研究. 浙江大学学报:农业与生命科学版, 2006, 32(4): 420-427.

Qiu L Z, Huang Y J, Huang J Q, Xia G H, Gong N. Comparative study on vegetal and physiological characteristics of different salt-tolerant plants under salt stress. Journal of Zhejiang University:Agricultural and Life Science, 2006, 32(4): 420-427. (in Chinese)

[23] 王邦锡, 何军贤, 黄久常. 水分胁迫导致小麦叶片光合作用下降的非气孔因素. 植物生理学报, 1992, 18(1): 77-84.

Wang B X, He J X, Huang J C. Non-stomatal factors causing photosynthetic rate decline induced by water stress. Acta Phytophysiologica Sinica, 1992, 18(1): 77-84. (in Chinese)

[24] 薛忠财, 高辉远, 柳 洁. 野生大豆和栽培大豆光合机构对NaCl胁迫的不同响应. 生态学报, 2011, 31(11): 3101-3109.

Xue Z C, Gao H Y, Liu J. Different response of photosynthetic apparatus between wild soybean (Glycine soja) and cultivated soybean (Glycine max) to NaCl stress. Acta Ecologica Sinica, 2011, 31(11): 3101-3109. (in Chinese)

[25] 杨淑萍, 危常州, 梁永超. 盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响. 中国农业科学, 2010, 42(8): 1585-1593.

Yang S P, Wei C Z, Liang Y C. Effects of NaCl stress on the characteristics of photosynthesis and chlorophyll fluorescence at seedlings stage in different sea island cotton genotypes. Scientia Agricultura Sinica, 2010, 42(8): 1585-1593. (in Chinese)

[26] Mlrales F, Abadía A, Gómez-Aparisi J, Abadía J. Effects of combined NaCl and CaCl2 salinity on photosynthetic parameters of barley grown in nutrient solution. Physiologia Plantarum, 1992, 86(3): 419-426.

[27] Lu C, Qiu N, Wang B, Zhang J. Salinity treatment shows no effects on photosystemⅡphotochemistry, but increases the resistance of photosystemⅡ to heat stess in halophyte Suaeda salsa. Journal of Experimental Botany, 2003, 54: 851-860.

[28] Yang X H, Chen X Y, Ge Q Y, Li B, Tong Y P, Zhang A M, Li Z S, Kuang T Y, Lu C M. Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: A comparison between a hybridization line and its parents grown under field condition. Plant Science, 2006, 171(3): 389-397.

[29] Foyer C H, Noctor G. Oxygen processing in photosynthesis: a molecular approach. New Phytologist, 2000, 146, 359-388.

[30] Lu C M, Zhang J H. Effects of water stress on photosystemⅡ photochemistry and its thermostability in wheat plants. Journal of Experimental Botany, 1999, 50(336): 1199-1206.

[31] Xu C C, Li D Q, Zou Q, Zhang J H. Effect of drought on chlorophyll fluorescence and xanthophyll cycle components in winter wheat leaves with different ages. Acta Phytophysiologica Sinica, 1999, 25(1): 29-37.

[32] 徐 凯, 郭延平, 张上隆. 草莓叶片光合作用对强光的响应及其机理研究. 应用生态学报, 2005, 16(1): 73-78.

Xu K, Guo Y P, Zhang S L. Response of strawberry leaves photosynthesis to strong light and its mechanism. Chinese Journal of Applied Ecology, 2005, 16(1): 73-78. (in Chinese)
[1] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[2] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[3] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[4] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[5] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[6] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[7] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[8] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[9] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[10] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[11] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[12] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[13] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[14] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[15] LI ShunGuo,LIU Meng,LIU Fei,ZOU JianQiu,LU XiaoChun,DIAO XianMin. Current Status and Future Prospective of Sorghum Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 471-482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!