Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (14): 2981-2990.doi: 10.3864/j.issn.0578-1752.2012.14.022

• VETERINARY SCIENCE • Previous Articles     Next Articles

Isolation, Identification and Bioinformatics Analysis of CAT Protein Related with Hepatotoxity by Copper Nanoparticles in Rats

 DONG  Shu-Wei, GAO  Zhao-Hui, SHEN  Xiao-Yun, XUE  Hui-Wen, LI  Xia   

  1. 1.中国农业科学院兰州畜牧与兽药研究所/农业部兽用药物创制重点实验/甘肃省中兽药工程技术中心,兰州 730050
    2.贵州省毕节学院,贵州毕节 551700
    3.甘肃农业大学动物医学院,兰州 730070
  • Received:2012-01-19 Online:2012-07-15 Published:2012-04-01

Abstract: 【Objective】In order to investigate the hepatotoxic mechanisms of nanoparticles copper, catalase (CAT) was isolated and identified from liver, and analyzed by bioinformatics, which is related with hepatotoxity induced by copper nanoparticles in rats.【Method】 The differential expression proteins related with hepatotoxity of copper nanoparticles were screened by 2-DE and PDQuest 8.0 software and then analyzed by bioinformatics after identified by MALDI-TOF-TOF MS through comparative proteomics strategy.【Result】The 6602 and 7702 spots of differentially expressed proteins were found to associate with hepatotoxity. They were identified as CAT protein which was located in the cytoplasm. This hydrophilic protein had no signal peptide, and was non-secreted protein. It also contained catalase active sites 64FDRERIPERVVHAKGAG80 and catalase heme ligand sites 354RLFAYPDTH362. The random coils, α-helices and extended chains were its main secondary structural elements, and the three-dimensional structure was predicted. Homology analysis showed that CAT had a high homology between rat and the other eight species, and the phylogenetic tree of CAT was constructed. 【Conclusion】Copper nanoparticles could regulate down the CAT protein expression so as to induce oxidative stress injury in liver cells, which may be a pathway of copper nanoparticles to exert the hepatotoxic effects in rats.

Key words: copper nanoparticles, hepatotoxity, proteomics, catalase, bioinformatics, rat

[1]孔  涛, 郝雪琴, 赵振升, 周变华, 王国永. 纳米微量元素在畜牧业中的应用. 饲料研究, 2011, 12(2): 12-13.

Kong T, Hao X Q, Zhao Z S, Zhou B H, Wang G Y. The application of nano-level microelements in animal husbandry. Feed Research, 2011, 12(2): 12-13. (in Chinese)

[2]Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311 (3): 622-627.

[3]王艳华. 纳米铜和硫酸铜对断奶仔猪生长、腹泻和消化的影响及作用机理探讨[D]. 杭州:浙江大学, 2002.

Wang Y H. Effect of nano Cu and CuSO4 on growth performance, diarrhrea incidence and digestion and approach to the mechanism in weanling pigs[D]. Hangzhou: Zhejiang University, 2002. (in Chinese)

[4]甄 波, 朱长虹, 谢长生, 刘子龙, 蔡水洲, 沈 娅, 狄海红, 刘合芳. 纳米铜/聚合物复合材料宫内节育器对猕猴宫腔液t-PA、PAF、PGE2 水平的影响.生殖与避孕, 2006, 26(8):467-471.

Zhen B, Zhu C H, Xie C S, Liu Z L, Cai S Z, Shen Y, Di H H, Liu H F. Impact of Nano-Cu/LDPE-IUD on the Level of t-PA、PAF、PGE2 in the Uterine Fluid of Macaca mulatta. Reproduction and Contraception, 2006, 26(8): 467-471. (in Chinese)

[5]Liu G, Li X, Qin D, Xing Y,Guo,R Fan. Investigation of the mending effect and mechanism of copper nanoparticles on a tribologically stressed surface. Tribology Letters, 2004, 17(4):961-966.

[6]Cioffi N , Ditaranto N , Torsi L, Picca R A. Sabbatini L, Valentini A, Novello L, Tantillo G, Bleve-Zacheo T, Zambonin P G. Analytical characterization of bioactive Fluoropolymer ultra-thin coatings modified by copper nanoparticles. Analytical and Bioanalytical Chemistry, 2005, 381(3): 607-616.

[7]荔 霞, 刘永明, 齐志明, 董书伟, 刘世祥, 王胜义, 万玉林, 刘 旭. 纳米铜毒性研究进展. 动物医学进展, 2010, 31(8):74-78.

Li X, Liu Y M, Qi Z M, Dong S W, Liu S X, Wang S Y, Wang Y L, Liu X. Progress on nano-copper toxicity. Progress in Veterinary Medicine, 2010, 31(8):74-78. (in Chinese)

[8]Chen Z, Meng H, Xing G M, Chen C Y, Zhao Y L, Jia G, Wang T C, Yuan H, Ye C, Zhao F, Chai Z F, Zhu C F, Fang X H, Ma B C, Wan L J. Acute toxicological effects of copper nanoparticles in vivo.  Toxicology Letters, 2006, 163(2):109-120.

[9]Meng H, Chen Z, Xing G M, Yuan H, Chen C Y, Zhao F, Zhang C C, Zhao Y L. Ultrahigh reactivity provokes nanotoxicity:Explanation of oral toxicity of nano-copper particles. Toxicology Letters, 2007, 175(1-3):102-110.

[10]Griffitt R J, Weil R, Hyndman K A, Denslow N D, Powers K, Taylor D, Barber D S. Exposure to copper nanoparticles causes gill injury and acute lethality in Zebrafish (Danio rerio). Environmental Science and Technology, 2007, 41(23):8178-8186.

[11]Lei R H, Wu C Q, Yang B H, Ma H Z, Shi C, Wang Q J, Wang Q X, Yuan Y, Liao M Y. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicology and Applied Pharmacology, 2008, 232(2):292-301.

[12]Prabhu B M, Ali S F, Murdock R C, Hussain S M,  Srivatsan M. Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology, 2010, 4(2): 150-160.

[13]Zhou S B, Bailey M J, Dunn M J, Preedy V R, Emery P W. A quantitative investigation into the losses of proteins at different stages of a two-dimensional gel electrophoresis procedure. Proteomics, 2005, 5 (11): 2739 -2747.

[14]杨保华.利用基因组学和蛋白质组学技术研究纳米铜的肝、肾毒性及作用机制[D]. 北京:军事医学科学院,2010.

Yang B H,The mechanical study of nanocoppers’ toxicity using genomics and proteomics technologies[D]. Beijing: Institute of Pharmacology and Toxicology, 2010. (In Chinese)

[15]Friedman D B, Hoving S, Westerneier R. Isoelectric focusing and two-dimensional gel electrophoresis. Methods Enzymology, 2009, 463(7):515- 540.

[16]Thierry Rabilloud, Mireille Chevallet, Sylvie Luche, Cécile Lelong. Two-dimensional gel electrophoresis in proteomics: Past, present and future, Journal of Proteomics, 2010, 73(11): 2064-2077.

[17]Hermann Schägger. Tricine-SDS-PAGE. Nature Protocols, 2006, 1(1): 16-22.

[18]韩伟东, 王 栋, 郝海生, 杜卫华, 赵学明, 朱化彬. 牛精子蛋白质组的双向电泳和质谱鉴定初步研究. 安徽农业大学学报,  2009, 36( 4) : 538-542.

Han W D, Wang D, Hao H S, Du W H, Zhao X M, Zhu H B. Primary studies on bovine sperm proteome by two-dimensional gel electrophoresis and mass spectrometry. Journal of Anhui Agricultural University, 2009, 36(4): 538-542. (in Chinese)

[19]Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri G M, Carnemolla B, Orecchia P, Zardi L, Righetti P G. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 2004, 25(9): 1327-1333.

[20]Ma Y L, Peng J Y, Huang L, Liu W J, Zhang P, Qin H L. Searching for serum tumor markers for colorectal cancer using a 2-D DIGE approach. Electrophoresis, 2009, 30(15): 2591- 2599.

[21]Zhang W, Sun Z R. Random local neighbor joining: A new method for reconstructing phylogenetic trees. Molecular Phylogenetics and Evolution, 2008, 47(1): 117- 128.

[22]Yu L R. Pharmacoproteomics and toxicoproteomics: The field of dreams. Journal of Proteomics, 2011, 74(12): 2549-2553.

[23]Veraksa A. When peptides fly: Advances in Drosophila proteomics. Journal of Proteomics, 2010, 73 (11): 2158-2170.

[24]徐庆刚, 陆 健, 郑建洲, 陈华友, 陈克平. 河豚4SNc-2Tudor蛋白的鉴定及生物信息分析. 安徽农业科学, 2010, 38 (3):1163 - 1166.

Xu Q G, Lu J,Zheng J Z, Chen H Y, Chen K P. Characterization and bioinformatics analysis of 4SNc-tudor domain protein of takifugu rubripes. Journal of Anhui Agricultural Sciences, 2010, 38 (3): 1163-1166. (in Chinese)

[25]Salvi M, Battaglia V, Brunati A M, Rocca N L, Tibaldi E, Pietrangeli P , Marcocci  L, MondovìB , Carlo A. Toninello R A. Catalase takes part in rat liver mitochondria oxidative stress defense. Biological Chemistry, 2007, 282(33):24407-24415.

[26]Nordberg J, Arner E S J. Reactive oxygen species, antioxidants and the mammalian thioredoxin system. Free Radical and Biology Medicine, 2001, 31(11):1287-1312.

[27]Li C H, Ni D J, Song L S, Zhao J M, Zhang H, Li N. Molecular cloning and characterization of a Catalase gene from Zhikong scallop Chlamys farreri. Fish and Shellfish Immunology, 2008, 24, 26-34.

[28]Andrades M, Ritter C, OliveiraM R, Streck E L, Moreira J C F, Dal-Pizzol F. Antioxidant treatment reverses organ failure in rat model of sepsis: role of antioxidant enzymes imbalance, neutrophil infiltration, and oxidative stress. Journal of Surgical Research, 2011, 67(2):307-313.

[29]Yamamoto K, Banno Y, Fujii H, Miake F, Kashige N, Aso Y. Catalase from the silkworm, Bombyx mori: gene sequence, distribution, and over expression. Insect Biochemistry and Molecular Biology, 2005, 35:277-283.

[30]廖明阳, 刘华钢. 纳米铜对肾细胞的氧化损伤作用. 中国药理学通报, 2011, 27(2):239 -242.

Liao M Y, Liu H G. Oxidative damage on HK-2 cells induced by nano-copper particles. Chinese Pharmacological Bulletin, 2011, 27(2):239 -242. (in Chinese)
[1] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[4] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[5] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[6] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[7] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[8] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[9] DONG FuCheng,MA ShuLi,SHI JuanJuan,ZHANG JunMei,CUI Yan,REN YouShe,ZHANG ChunXiang. Expression and Localization of LCN5 in Ram Reproductive Organs and Spermatozoa [J]. Scientia Agricultura Sinica, 2022, 55(7): 1445-1457.
[10] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[11] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[12] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[13] CHEN ZhiYong, ZHANG Zhi, LIU Jie, KANG AiGuo, ZHAO SuMei, YIN XiangJie, LI ZhanQing, XIE AiTing, ZHANG YunHui. Spatiotemporal Dynamics and Source of Loxostege sticticalis in Northern China in 2020 [J]. Scientia Agricultura Sinica, 2022, 55(5): 907-919.
[14] WANG YuTai,XU ZhiFan,LIU Jie,ZHONG GuoHua. Preparation and Application of Indoxacarb Degrading Bacteria Immobilized Sodium Alginate Microspheres [J]. Scientia Agricultura Sinica, 2022, 55(5): 920-931.
[15] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
Full text



No Suggested Reading articles found!