Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (14): 2973-2980.doi: 10.3864/j.issn.0578-1752.2012.14.021

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

The Base Mutation of Ovine UCP1 Gene and Its Relationship   with Protein Structure and Function

 YUAN  Ya-Nan, LIU  Wen-Zhong, LIU  Jian-Hua, QIAO  Li-Ying, WU  Jian-Liang   

  1. 山西农业大学动物科技学院,山西太谷 030801
  • Received:2011-11-17 Online:2012-07-15 Published:2012-01-30

Abstract: 【Objective】The objectives of this study are to detect the single nucleotide polymorphism (SNP) of UCP1 gene in two fat-tailed sheep breeds, and to predict the protein structure and function caused by the mutations. 【Method】 PCR-SSCP combined with sequencing were used to detect the SNPs in coding region of UCP1 gene, and bioinformatics approach was used to predict the physicochemical properties and structures of UCP1 protein. 【Result】 Four SNPs existed in the coding region, with c.214G>A (Val72Met) and c.273C>T located on exon 2, c.624C>T and and c.757G>A (Ala253Thr) on exon 5. Further analysis indicated that the two mutations which caused amino acid substitution had little influence on the protein expression. This was because of the two mutations merely resulted in a slight change of the physicochemical properties and transcription factor binding site, but did not lead to the change of its spatial configuration. 【Conclusion】Comparison of UCP1 protein structures between two exonic mutants, which associated respectively with human obesity and diabetes, and the normal structure suggested that the changes in UCP1 protein structure could influence the protein function.

Key words: sheep, uncoupling protein 1 (UCP1), single nucleotide polymorphism (SNP), bioinformatics, protein structure

[1]Clarke L, Bryant M J, Lomax M A, Symonds M E. Maternal manipulation of brown adipose tissue and liver development in the ovine fetus during late gestation. The British Journal of Nutrition. 1997, 77(6): 871-883.

[2]Bassett J M, Bomford J, Mott J C. Photoperiod: an important regulator of plasma prolactin concentration in fetal lambs during late gestation. Quarterly Journal of Experimental Physiology, 1988, 73(2): 241-244.

[3]Sale M M, Hsu F C, Palmer N D, Gordon C J, Keene K L, Borgerink H M, Sharma A J, Bergman R N, Taylor K D, Saad M F, Norris J M. The uncoupling protein 1 gene, UCP1, is expressed in mammalian islet cells and associated with acute insulin response to glucose in African American families from the IRAS family study. BMC Endocrine Disorders, 2007, 7: 1-10.

[4]Rudofsky G Jr, Schrodter A, Voron’ko O E, Schlotterer A, Humpert P M, Tafel J, Nawroth P P, Bierhaus A, Hamann A. Promoter polymorphisms of UCP1, UCP2, and UCP3 are not associated with diabetic microvascular complications in type 2 diabetes. Hormone and Metablic Research, 2007, 39(4): 306-309.

[5]Kim K S, Cho D Y, Kim Y J, Choi S M, Kim J Y, Shin S U, Yoon Y S. The finding of new genetic polymorphism of UCP-1 A-1766G and its effects on body fat accumulation. Biochimica et Biophysica Acta, 2005, 1741(1/2): 149-155.

[6]Shin H D, Kim K S, Cha M H, Yoon Y. The effects of UCP-1 polymorphisms on obesity phenotypes among Korean female subjects. Biochemical and Biophysical Research Communications, 2005, 335(2): 624-630.

[7]Nagai N, Sakane N, Kotani K, Hamada T, Tsuzaki K, Moritani T. Uncoupling protein 1 gene -3826 A/G polymorphism is associated with weight loss on a short-term, controlled-energy diet in young women. Nutrition Research, 2011, 31: 255-261.

[8]Mori H, Okazawa H, Iwamoto K, Maeda E, Hashiramoto M, Kasuga M. A polymorphism in the 5′ untranslated region and a Met229-->Leu variant in exon 5 of the human UCP1 gene are associated with susceptibility to type II diabetes mellitus. Diabetologia, 2001, 44(3): 373-376.

[9]Labruna G, Pasanisi F, Fortunato G, Nardelli C, Finelli C, Farinaro E, Contaldo F, Sacchetti L. Sequence analysis of the UCP1 gene in a severe obese population from Southern Italy. Journal of Obesity, 2011. doi: 10.1155/2011/269043.

[10]Hu J, Zhou H, Smyth A, Luo Y, Hickford J G. Polymorphism of the bovine ADRB3 gene. Molecular Biology Reports, 2010, 37(7): 3389-3392.

[11]Walker J M. The Proteomics Protocols Handbook. Totowa, N.J: Humana Press, 2005: 988.

[12]Cheng J, Saigo H, Baldi P. Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching. Proteins, 2006, 62(3): 617-629.

[13]Randall A, Cheng J, Sweredoski M, Baldi P. TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins. Bioinformatics, 2008, 24(4): 513-520.

[14]Rost B, Yachdav G, Liu J. The PredictProtein server. Nucleic Acids Research, 2004, 32: 321-326.

[15]Petersen T N, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 2011, 8: 785-786.

[16]Julenius K, Molgaard A, Gupta R, Brunak S. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology, 2005, 15(2): 153-164.

[17]Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology, 1999, 294(5): 1351-1362.

[18]Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel A E, Kel O V, Ignatieva E V, Ananko E A, Podkolodnaya O A, Kolpakov F A, Podkolodny N L, Kolchanov N A. Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Research, 1998, 26(1): 362-367.

[19]Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22(2): 195-201.

[20]Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T. The SWISS- MODEL repository and associated resources. Nucleic Acids Research, 2009, 37: D387-D392.

[21]Kopp J, Schwede T. The SWISS-MODEL repository of annotated three-dimensional protein structure homology models. Nucleic Acids Research, 2004, 32: D230-D234.

[22]Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 2011, 27: 343-350.

[23]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.

[24]Kozak L P, Britton J H, Kozak U C, Wells J M. The mitochondrial uncoupling protein gene. Correlation of exon structure to transmembrane domains. Journal of Biological Chemistry, 1988, 263: 12274-12277.

[25]Yubero P, Manchado C, Cassard-Doulcier A M, Mampel T, Vinas O, Iglesias R, Giralt M, Villarroya F. CCAAT/enhancer binding proteins alpha and beta are transcriptional activators of the brown fat uncoupling protein gene promoter. Biochemical and Biophysical Research Communications, 1994, 198(2): 653-659.

[26]Kumar N, Liu D, Wang H, Robidoux J, Collins S. Orphan nuclear receptor NOR-1 enhances 3′, 5′-cyclic adenosine 5′-monophosphate- dependent uncoupling protein-1 gene transcription. Molecular Endocrinology, 2008, 22(5): 1057-1064.

[27]Wang H, Zhang Y, Yehuda-Shnaidman E, Medvedev A V, Kumar N, Daniel K W, Robidoux J, Czech M P, Mangelsdorf D J, Collins S. Liver X receptor alpha is a transcriptional repressor of the uncoupling protein 1 gene and the brown fat phenotype. Molecular and Cellular Biology, 2008, 28(7): 2187-2200.

[28]Shore A, Karamitri A, Kemp P, Speakman J R, Lomax M A. Role of Ucp1 enhancer methylation and chromatin remodelling in the control of Ucp1 expression in murine adipose tissue. Diabetologia, 2010, 53(6): 1164-1173.

[29]Yuan Y N, Liu W Z, Liu J H, Qiao L Y, Wu J L. Cloning and ontogenetic expression of the uncoupling protein 1 gene (UCP1) in sheep. Journal of Applied Genetics, 2012, 53(2): 203-212.
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[4] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[5] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
[6] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[7] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[8] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[9] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[10] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[11] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[12] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[13] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[14] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[15] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!