Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (13): 2743-2750.doi: 10.3864/j.issn.0578-1752.2012.13.019

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Cloning and Expression of Cellular Retinoic Acid Binding ProteinⅠGene in Inner Mongolian Cashmere Goats

 LI  Hua, SU  Li-Ning, LIU  Dong-Jun, LI  Xue-Feng, XU  Ri-Gan   

  1. 1.内蒙古大学生命科学院/哺乳动物生殖生物学及生物技术教育部重点实验室,呼和浩特 010021
    2.佛山科学技术学院,广东佛山 528231
    3.华南师范大学生命科学学院,广州 510000;4河北北方学院,河北张家口 075000
  • Received:2011-12-05 Online:2012-07-01 Published:2012-04-05

Abstract: 【Objective】The cDNA sequence of cellular retinoic acid binding protein I (CRABPⅠ) gene was cloned in Inner Mongolian cashmere goats, and the protein structure gene and expression were also analyzed. All these would establish a foundation for molecular mechanism of follicle and cashmere formation. 【Method】 The cDNA sequence of CRABP I gene was cloned by RT-PCR in Inner Mongolian cashmere goats. The protein structure was predicted through bioinformatics approach, the mRNA expression of the gene at four embryo ages in skin of cashmere goat were detected through real time PCR. 【Result】The length cDNA is 679 bp (JN936490) , its open reading frame (ORF) is 414 bp,which shares high similarity with other species. CRABPⅠprotein has no obvious signal peptide, transmembrane segments, N-glycosylation sites and O-glycosylation sites. The secondary structure of CRABPⅠprotein consisted of mainly β sheets, α helixes and loops, also few turn and coil. CRABPⅠ gene in cashmere goats was highly expressed on 90 d compared with on 100 d, 120 d and 130 d (P<0.05). 【Conclusion】The open reading frame (ORF) of CRABPⅠgene is conserved among different species, but it has characteristics at 33 and 123 amino sites in cashmere goats. The level of mRNA expression was the highest on 90 d at four embryo stages, the polymorphism of this gene in different breeds and its regulation mechanism to sebaceous gland of hair follicle needs to be studied further.

Key words: cashmere goats, CRABPⅠgene, clone, gene expression, bioinformatics

[1]郭晓红, 储明星, 周忠孝. 视黄酸受体的分子生物学. 畜牧与兽医, 2007, 39(7): 61-64.

Guo X H, Chu M X, Zhou Z X. The molecular biology of retinoic acid receptors. Animal Husbandry and Veterinary medicine, 2007, 39(7): 61-64. (in Chinese)

[2]Nelson A M, Zhao W, Gilliland K L, Zaenglein A L, Liu W, Thiboutot D M. Neutrophil gelatinase-associated lipocalin mediates 13-cis retinoic acid-induced apoptosis of human sebaceous gland cells. The Journal of Clinical Investigation, 2008, 118(4): 1468-1478.

[3]龚春华, 李  军, 王大为. 视黄酸信号与胚胎心脏发育的关系. 心脏杂志, 2010, 22(1): 130-132. (in Chinese)

Gong C H, Li J, Wang D W. The relationship of  retinoic acid signaling and embryonic development. Chinese Heart Journal, 2010, 22(1): 130-132.

[4]公维华, 张敬虎, 林  莹, 张  锐, 李  奎. 猪细胞视黄醇结合蛋白基因 1 (CRBP1) 内含子 1 的克隆测序. 漳州师范学院学报: 自然科学版, 2009, 22(3): 143-145.

Gong W H, Zhang J H, Lin Y, Zhang R, Li K. Sequencing of the intron 1 of porcine cellular retinol binding protein gene 1 (CRBP1). Journal of Zhangzhou Normal University: Nature Science, 2009, 22(3): 143-145. (in Chinese)

[5]Shubeita H E, Sambrook J F, McCormick A M. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(16): 5645-5649.

[6]Vaezeslami S, Jia X, Vasileiou C, Borhan B, Geiger J H. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein Ⅱ addresses the relationship between structural integrity and ligand binding. Acta Crystallographica Section D: Biological Crystallography, 2008, 64(12): 1228-1239.

[7]Boylan J F, Gudas L J. Overexpression of the cellular retinoic acid binding protein-I (CRABP-Ⅰ) results in a reduction in differentiation- specific gene expression in F9 teratocarcinoma cells. The Journal of Cell Biology, 1991, 112(5): 965-979.

[8]Georges S, Isabelle T, Dominique C G, Stefano J, Erikssont U, Saurat J H. Expression of CRABP-Ⅰ and -Ⅱ in human epidermal cells. Biochemical Journal, 1992, 287: 383-389.

[9]Propping C, Mönig B, Luksch H, Mey J. Distribution of the cellular retinoic acid binding protein CRABP-Ⅰ in the developing chick optic tectum. Brain Research, 2007, 1168: 21-31.

[10]Uhrig M, Brechlin P, Jahn O, Knyazev Y, Weninger A, Busia L, Honarnejad K, Otto M, Hartmann T. Upregulation of CRABP 1 in human neuroblastoma cells overproducing the Alzheimer-typical Aβ 42 reduces their differentiation potential. BMC Medicine, 2008, 6(1): 38-50.

[11]屠军波, 姚天华, 杨壮群, 张引成. 激素在毛囊皮脂腺单位发育中的作用. 中国美容医学, 2002, 11(2): 188-191.

Tu J B, Yao T H, Yang Z Q, Zhang Y C. The role of hormone in pilosebaceous unit dedevelopment. Chinese Journal of Aesthetic Medicine, 2002, 11(2): 188-191. (in Chinese)

[12]Tang X H, Vivero M, Gudas L J. Overexpression of CRABP I in suprabasal keratinocytes enhances the proliferation of epidermal basal keratinocytes in mouse skin topically treated with all-trans retinoic acid. Experimental Cell Research, 2008, 314(1): 38-51.

[13]张燕军, 尹  俊, 李金泉, 李长青. 内蒙古阿尔巴斯绒山羊毛囊结构及形态发生过程研究. 中国农业科学, 2007, 40(5): 1017-1023.

Zhang Y J, Yin J, Li J Q, Li C Q. Study on hair follicle structure and morphogenesis of the Inner Mongolian Arbas Cashmere goat. Scientia Agricultura Sinica, 2007, 40(5): 1017-1023. (in Chinese)

[14]Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W. β-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 2001, 105(4): 533-545.

[15]王宏博, 高雅琴. 绒山羊皮肤毛囊结构及其与产绒量关系的研究进展. 安徽农业科学, 2008, 36(29): 12701-12703. 

Wang H B, Gao Y Q. Research progress in skin follicle structure of cashmere goat and its relationship with cashmere yield. Journal  of Anhui Agricultural Sciences, 2008, 36(29): 12701-12703. (in Chinese)

[16]刘志红, 任立明, 郭  英, 胡晓湘, 崔文涛, 李  宁, 尹  俊, 李金泉. 毛囊的周期性变化和分子调控及其在绒山羊上的研究进展. 中国畜牧兽医, 2009, 36(4): 103-107.

Liu Z H, Ren L M, Guo Y, Hu X X, Cui W T, Li N, Yin J, Li J Q. The cyclical variation and regulation of hair follicles and the study on cashmere goat. China Animal Husbandry and Veterinary Medicine, 2009, 36(4): 103-107. (in Chinese)

[17]周汝真, 李若瑜, 余  进. 白念珠菌抗氧化基因体外表达研究. 中国真菌学杂志, 2009, 4(6): 325-329.

Zhou R Z, Li R Y, Yu J. Anti-oxidant gene expression of candida albicans in vitro culture. Chinese Journal of Mycology, 2009, 4(6): 325-329. (in Chinese)

[18]Krishnan V V, Sukumar M, Gierasch L M, Cosman M. Dynamics of cellular retinoic acid binding protein I on multiple time scales with implications for ligand binding. Biochemistry, 2000, 39(31): 9119-9129.

[19]Sjoelund V, Kaltashov I A. A transporter-to-trap conversion: a disulfide bond formation in CRABPⅠ mutant triggered by retinoic acid binding irreversibly locks the ligand inside the protein. Biochemistry, 2007, 46(46): 13382-13390.

[20]Park S W, Huang W H, Persaud S D, Wei L N. RIP140 in thyroid hormone-repression and chromatin remodeling of Crabp1 gene during adipocyte differentiation. Nucleic Acids Research, 2009, 37(21): 7085-7094.

[21]Roos T C, Jugert F K, Merk H F, Bickers D R. Retinoid metabolism in the skin. Pharmacological Reviews, 1998, 50(2): 315-333.

[22]吴江鸿, 闫祖威, 胡斯乐, 张文广, 李金泉. Hoxc13 在毛囊发育中的作用. 遗传, 2010, 32(7): 656-662.

Wu J H, Yan Z W, Hu S L, Zhan W G, Li J Q. Hoxc13 and the development of hair follicle. Hereditas, 2010, 32(7): 656-662. (in Chinese)

[23]Everts H B, Sundberg J P, King L E, Ong D E. Immunolocalization of enzymes, binding proteins, and receptors sufficient for retinoic acid synthesis and signaling during the hair cycle. Journal of Investigative Dermatology, 2007, 127(7): 1593-1604.
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[3] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[4] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[5] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[6] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[7] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[8] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[9] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
[10] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[11] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[12] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[13] GUO FengHui,DING Yong,JI Lei,LI XianSong,LI XiLiang,HOU XiangYang. The Response of Leymus chinensis Cloned Offspring to Mowing [J]. Scientia Agricultura Sinica, 2022, 55(11): 2257-2264.
[14] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[15] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!