Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (24): 4971-4979.doi: 10.3864/j.issn.0578-1752.2011.24.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Creation of Drought-Resistant Variety and Analysis of Physiological Mechanism of W16 Transgenic Wheat

 ZHANG  Shuang-Xi, XU  Zhao-Shi, ZHANG  Gai-Sheng, LI  Lian-Cheng, CHEN  Xiao, CHEN  Ming, MA  You-Zhi   

  1. 1.西北农林科技大学农学院,陕西杨凌 712100
    2.中国农业科学院作物科学研究所/农作物基因资源与基因改良国家重大科学工程/农业部作物遗传育种重点开放实验室,北京 100081
    3.宁夏农林科学院农作物研究所,宁夏永宁 750105
  • Received:2011-07-21 Online:2011-12-15 Published:2011-10-30

Abstract: 【Objective】 The objective of this study is to study the breeding of new drought-resistant varieties and analyze their physiological mechanism, and to provide a theoretical basis for drought-resistant identification of transgenic wheat plants. 【Method】 Three stable W16-transgenic lines were used as materials, and drought-resistant identification was done in the field which was compared under irrigation and drought condition from 2008 to 2010. In addition, the contents of proline, souble sugar, and the SPAD value of flag leaf under different growth periods investigated. 【Result】 Under drought stress conditions, the grain weight per plant and the 1000-grain weight of transgenic lines increased significantly by 1% compare with those of the control. The grain weight per plant of transgenic lines increased by 20.00%-23.08%, 20.88%-24.71% and 15.29%-25.27%, respectively, and the 1000-grain weight elevated by 16.24%-19.85%, 13.46%-16.95%, and 21.58%-24.46%, respectively. Under the normal irrigation conditions, the grain weight per plant of the transgenic lines increased significantly by 7.04%-11.11%, 3.52%-8.73%, and 8.45%-12.70%, respectively, and the 1000-grain weight elevated by 13.57%-14.97%, 9.91%-11.67% and 14.17%-14.65%, respectively, compared with the control. Drought resistant index (DRI) of the grain weight per plant and the 1000-grain weight of transgenic lines were strong, or even extremely strong (1.15 to 1.45). In addition, the total length, total surface area, and total volume of root system of transgenic lines were significantly increased under drought stress conditions. The contents of proline and soluble sugar, and SPAD value of flag leaf of transgenic lines were much higher than those of the receptor in the late filling stage.【Conclusion】Overexpression of the W16 improved root structure, prolonged functional period of flag leaf, and finally improved the adaptive ability to drought stress in transgenic wheat lines.

Key words: wheat, drought-resistance, transgene, yield characteristics, physiological and biochemical index

[1]Bray E A. Plant responses to water deficit. Trends in Plant Science, 1997, 2(2): 48-54.

[2]Zhang J X, Klueva N Y, Wang Z, Wu R, Ho T H D, Nguyen H T. Genetic engineering for abiotic stress resistance in crop plants. In Vitro Cellular & Developmental Biology Plant, 2000, 36(2): 108-114.

[3]Ashraf M, Athar H R, Harris P J C, Kwon T R. Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 2008, 97: 45-110.

[4]Chen W Q, Provart N J, Glazebrook J, Katagiri F, Chang H S, Eulgem T, Mauch F, Luan S, Zou G Z, Whitham S A, Budworth P R, Tao Y, Xie Z Y, Chen X, Lam S, Kreps J A, Harper J F, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl J L, Wang X, Zhu T. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. The Plant Cell, 2002, 14: 559-574.

[5]刘  强, 赵南明, Yamaguch-Shinozaki K, Shinozaki K. DREB转录因子在提高植物抗逆性中的作用. 科学通报, 2000, 45(1): 11-16.

Liu Q, Zhao N M, Yamaguch-Shinozaki K, Shinozaki K. The function of DREB transcription factors to improving of plant resistance. Chinese Science Bulletin, 2000, 45(1): 11-16. (in Chinese)

[6]Gao S M, Zhang H W, Tian Y, Li F, Zhang Z J, Lu X Y, Chen X L, Huang R F. Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Reports, 2008, 27: 1787-1795.

[7]Wang Q Y, Guan Y C, Wu Y R, Chen H L, Chen F, Chu C C. Over expression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 2008, 67: 589-602.

[8]Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought, high-salt and cold-responsive gene expression. The Plant Journal, 2003, 33: 751-763.

[9]Ding Z H, Li S M, An X L, Liu X, Qin H J, Wang D W. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. Journal of Genetics and Genomics, 2009, 36: 17-29.

[10]Gao S Q, Chen M, Xu Z S, Zhao C P, Li L C, Xu H J, Tang Y M, Zhao X, Ma Y Z. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Molecular Biology, 2011, 75: 537-553.

[11]高世庆, 陈  明, 徐兆师, 唐益苗, 李连城, 马有志, 赵昌平. 转GmAREB基因提高拟南芥的干旱、氧化胁迫耐性. 作物学报, 2011, 37(6): 982-990.

Gao S Q, Chen M, Xu Z S, Tang Y M, Li L C, Ma Y Z, Zhao C P. GmAREB gene improves tolerances to drought and oxidation in transgenic Arabidopsis. Acta Agronomica Sinica, 2011, 37(6): 982-990. (in Chinese)

[12]徐琼芳, 李连城, 陈  孝, 马有志, 叶兴国, 张增艳, 徐惠君, 辛志勇. 基因枪法获得GNA转基因小麦植株的研究. 中国农业科学, 2001, 34(1): 1-4.

Xu Q F, Li L C, Chen X, Ma Y Z, Ye X G, Zhang Z Y, Xu H J, Xin Z Y. Study on the obtaining of transgenic wheats with GNA alien gene by biolistic particle. Scientia Agricultura Sinica, 2001, 34(1): 1-4. (in Chinese)

[13]Wang J W, Yang F P, Chen X Q, Liang R Q, Zhang L Q, Geng D M, Zhang X D, Song Y Z, Zhang G S. Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Acta Genetica Sinica, 2006, 33(5): 468-476.

[14]陈毓荃. 生物化学实验方法和技术. 北京: 科学出版社, 2002, 171.

Chen Y Q. Biochemistry Experiment Method and Technology. Beijing: Science Press, 2002, 171. (in Chinese)

[15]栗雨勤, 张文英, 谢俊良, 彭海成, 李建兵, 卜俊周. 主要作物新品种抗旱性鉴定指标的研究与应用. 华北农学报, 2006, 21(增刊): 29-33.

Li Y Q, Zhang W Y, Xie J L, Peng H C, Li J B, Bu J Z. Research and application of drought-resistant identification index of major crop varieties. Acta Agriculturae Boreali Sinica, 2006, 21(Suppl.): 29-33. (in Chinese)

[16]Sullivan W M, Jiang Z C, Hull R J. Root morphology and its relationship with nitrate uptake in Kentucky bluegrass. Crop Science, 2000, 40: 765-772.

[17]Yang C W, Zhang M L, Liu J, Shi D C, Wang D L. Effects of buffer capacity on growth photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata). Photosynthetica, 2009, 47(1): 55-60.

[18]杨书运, 严  平, 梅雪英. 水分胁迫对冬小麦抗性物质可溶性糖与脯氨酸的影响. 中国农学通报, 2007, 23(12): 229.

Yang S Y, Yan P, Mei X Y. The impact on soluble sugar and proline contents under different water stress. Chinese Agricultural Science Bulletin, 2007, 23(12): 229. (in Chinese)

[19]Sivamani E, Bahieldin A, Wraith J M, Al-Niemi T, Dyer W E, Ho T H D, Qu R D. Improved biomass productivity and water use ef?ciency under water de?cit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Science, 2000, 155: 1-9.

[20]Quan R D, Shang M, Zhang H, Zhao Y X, Zhang J R. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal, 2004, 2(6): 477-486.

[21]Abebe T, Guenzi A C, Martin B, Cushman J C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiology, 2003, 131: 1748-1755.

[22]Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding speci?city of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002, 290: 998-1009.

[23]Chen W Q, Provart N J, Glazebrook J, Katagiri F, Chang H S, Eulgem T, Mauch F, Luan S, Zou G Z, Whitham S A, Budworth P R, Tao Y, Xie Z Y, Chen X, Lam S, Kreps J A, Harper J F, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl J L, Wang X, Zhu T. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. The Plant Cell, 2002, 14: 559-574.

[24]Oh S J, Kim Y S, Kwon C W, Park H K, Jeong J S, Kim J K. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiology, 2009, 150: 1368-1379.

[25]Qin F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Yamaguchi- Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiology, 2004, 45(8): 1042-1052.

[26]Xu Z S, Xia L Q, Chen M, Cheng X G, Zhang R Y, Li L C, Zhao Y  X, Lu Y, Ni Z Y, Liu L, Qiu Z G, Ma Y Z. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Molecular Biology, 2007, 65: 719-732.

[27]Jeong J S, Kim Y S, Baek K H, Jung H, Ha S H, Choi Y D, Kim M, Reuzeau C, Kim J K. Root-speci?c expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology, 2010, 153: 185-197.

[28]Zhang S J, Li N, Gao F, Yang A F, Zhang J R. Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Molecular Breeding, 2010, 26: 455-465.

[29]Xu Z S, Xia L Q, Chen M, Cheng X G, Zhang R Y, Li L C, Zhao Y X, Lu Y, Ni Z Y, Liu L, Qiu Z G, Ma Y Z. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Molecular Biology, 2007, 65: 719-732.

[30]Xu Z S, Chen M, Li L C, Ma Y Z. Functions of the ERF transcription factor family in plants. Botany, 2008, 86: 969-977.

[31]Xu Z S, Chen M, Li L C, Ma Y Z. Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal of Integrative Plant Biology, 2011, 53(7): 570-585.

[32]Ashraf M. Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 2010, 28: 169-183.

[33]Kerepesi I, Galiba G. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 2000, 40: 482-487.

[34]Naureen G, Naqvi F N. Salt tolerance classification in wheat genotypes using reducing sugar accumulation and growth characteristics. Emiirates Journal of Food and Agriculture, 2010, 22(4): 308-317.

[35]Li D X, Li C D, Sun H C, Wang W X, Liu L T, Zhang Y J. Effects of drought on soluble protein content and protective enzyme system in cotton leaves. Frontiers of Agriculture in China, 2010, 4(1): 56-62.

[36]高世庆, 徐惠君, 程宪国, 陈  明, 徐兆师, 李连城, 杜丽璞, 叶兴国, 郝晓燕, 马有志. 转大豆GmDREB 基因增强小麦的耐旱及耐盐性. 科学通报, 2005, 50(23): 2617-2625.

Gao S Q, Xu H J, Cheng X G, Chen M, Xu Z S, Li L C, Du L P, Ye X G, Hao X Y, Ma Y Z. GmDREB gene of soybean to enhance wheat drought resistance and salt resistance properties. Chinese Science Bulletin, 2005, 50(23): 2617-2625. (in Chinese)

[37]Lu C W, Li Y C, Chen A J, Li L, Zuo J H, Tian H Q, Luo Y B, Zhu B Z. LeERF1 improves tolerance to drought stress in tomato (Lycopersicon esculentum) and activates downstream stress- responsive genes. African Journal of Biotechnology, 2010, 9(38): 6294-6300.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!