Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (22): 4600-4609.doi: 10.3864/j.issn.0578-1752.2011.22.006

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Tobacco Plants Infested by Bemisia tabaci (Gennadius) B-biotype on the Development and Reproduction of Spodoptera litura (Fabricius) and Related Mechanisms

 WANG  Hong-Tao, XUE  Ming, LI  Qing-Liang, ZHANG  Xiao, ZHOU  Fang-Yuan   

  1. 1.山东农业大学植物保护学院,山东泰安 271018
    2.山东省烟台市农业科学研究院植物保护研究所,山东烟台 265500
  • Received:2011-03-08 Online:2011-11-15 Published:2011-05-25

Abstract: 【Objective】 The objective of this study is to define defense response of tobacco plants to Spodoptera litura induced by Bemisia tabaci B biotype and their spatial effect, and to explore its role in interspecific competition between B. tabaci and S. litura and its possible mechanism. 【Method】 The effects of leaves in different positions of tobacco preinfested by B. tabaci B-biotype on growth, development and fecundity of S. litura were investigated by feeding method and the change of related defense enzymes was analyzed using biochemical method in laboratory. 【Result】 The results showed that tobacco plants preinfested by B. tabaci B-biotype feeding had a negative effect on growth, development and fecundity of S. litura, and different leaf positions of treated plants reacted differently, the sequence was the whitefly-infested leaves>the middle leaves>the white-vein leaves. There were significant differences between treatment and its control. Trypsin protease inhibitor (TPI) content, β-1,3-glucanase activity and chitinase activity in the whitefly-infested leaves, the middle leaves and the white-vein leaves of the treated tobacco plants all increased significantly. The unexpanded leaves showed no significant effect on both the growth, development and fecundity of S. litura and the change of related defense enzymes. 【Conclusion】 Tobacco preinfested by B. tabaci B-biotype had a negative effect on growth, development and fecundity of S. litura. Furthermore, this effect was systemic and could be transported through the plant. Infestation by B. tabaci B-biotype in tobacco plants led to the higher induction of TPI, β-1, 3-glucanase and chitinase, and they may have a correlation with the negative effect on S. litura. The defense responses of tobacco plants induced by B. tabaci B-biotype feeding were considered to play an important role in the host defense against S. litura.

Key words: Bemisia tabaci B-biotype, tobacco, Spodoptera litura, growth and development, reproduction, spatial effect, defense enzyme

[1]Brown J K, Frohlich D R, Rosell R C. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology, 1995, 40(1): 511-534.

[2]Perring T M. The Bemisia tabaci species complex. Crop Protection, 2001, 20(9): 725-737.

[3]张芝利, 罗  晨. 我国烟粉虱的发生为害和防治对策. 植物保护, 2001, 27(2): 25-30.

Zhang Z L, Luo C. Occurrence, damage and control strategy of Bemisia tabaci (Gennadius) in China. Plant Protection, 2001, 27(2): 25-30. (in Chinese)

[4]Xie Y, Zhou X, Zhang Z, Qi Y. Tobacco curly shoot virus isolated in Yunnan is a distinct species of Begomovirus. Chinese Science Bulletin, 2002, 47(3): 199-201.

[5]褚  栋, 张友军, 丛  斌, 徐宝云, 吴青军, 朱国仁. 烟粉虱不同地理种群的mtDNA CO1基因序列分析及其系统发育. 中国农业科学, 2005, 38(1): 76-85.

Chu D, Zhang Y J, Cong B, Xu B Y, Wu Q J, Zhu G R. Sequence analysis of mtDNA CO1 gene and molecular phylogeny of different geographical populations of Bemisia tabaci (Gennadius). Scientia Agricultura Sinica, 2005, 38(1): 76-85. (in Chinese)

[6]Mayer R T, Inbar M, McKenzie C L, Shatters R, Borowicz V, Albrecht U, Powell C A, Doostdar H. Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Archives of Insect Biochemistry and Physiology, 2002, 51(4): 151-169.

[7]McKenzie C L, Shatters R G, Doostdar J H, Lee S D, Inbar M, Mayer R T. Effect of geminivirus infection and Bemisia infestation on accumulation of pathogenesis-related proteins in tomato. Insect Biochemistry and Physiology, 2002, 49: 203-214.

[8]Zang L S, Chen W Q, Liu S S. Comparison of performance on different host plants between the B biotype and a non-B biotype of Bemisia tabaci from Zhejiang, China. Entomologia Experimentalis et Applicata, 2006, 121(3): 221-227.

[9]Xue M, Wang C X, Bi M J, Li Q L, Liu T X. Induced defense by Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) in tobacco against Myzus persicae (Hemiptera: Aphididae). Environmental Entomology, 2010, 39(3): 883-891.

[10]Reitz S R, Trumble J T. Competitive displacement among insects and arachnids. Annual Review of Entomology, 2002, 47: 435-465.

[11]褚  栋, 张友军, 丛  斌, 徐宝云, 吴青君. 世界性重要害虫B型烟粉虱的入侵机制. 昆虫学报, 2004, 47(3): 400-406.

Chu D, Zhang Y J, Cong B, Xu B Y, Wu Q J. The invasive mechanism of a world important pest, Bemisia tabaci (Gennadius) biotype B. Acta Entomologicia Sinica, 2004, 47(3): 400-406. (in Chinese)

[12]雷  芳, 张桂芬, 万方浩, 马  骏. 寄主转换对B型烟粉虱和温室粉虱海藻糖含量和海藻糖酶活性的影响. 中国农业科学, 2006, 39(7): 1387-1394.

Lei F, Zhang G F, Wan F H, Ma J. Effects of plant species switching on contents and dynamics of trehalose and trehalase activity of Bemisia tabaci B-biotype and Trialeurodes vaporariorum. Scientia Agricultura Sinica, 2006, 39(7): 1387-1394. (in Chinese)

[13]Liu S S, De-Barro P J, Xu J, Luan J B, Zang L S, Ruan Y M, Wan F  H. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science, 2007, 318(5857): 1769-1772.

[14]崔旭红, 谢  明, 万方浩. 短时高温暴露对B型烟粉虱和温室白粉虱存活以及生殖适应性的影响. 中国农业科学, 2008, 41(2): 424-430.

Cui X H, Xie M, Wan F H. Effects of brief exposure to high temperature on survival and fecundity of two whitefly species: Bemisia tabaci B-biotype and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Scientia Agricultura Sinica, 2008, 41(2): 424-430. (in Chinese)

[15]刘金燕, 张桂芬, 万方浩, 王进军. 烟粉虱种内及种间竞争取代机制. 生物多样性, 2008, 16(3): 214-224.

Liu J Y, Zhang G F, Wan F H, Wang J J. Mechanisms of inter- and intra-specific competitive replacement by the Bemisia tabaci B biotype (Homoptera: Aleyrodidae). Biodiversity Science, 2008, 16(3): 214-224. (in Chinese)

[16]Murugan M, Dhandapani N. Induced systemic resistance activates defense responses to interspecific insect infestations on tomato. Journal of Vegetable Science, 2006, 12(3): 43-62.

[17]王承香, 薛  明, 毕明娟, 李庆亮, 胡海燕. B型烟粉虱取食诱导烟草对烟蚜防御反应的时间效应. 昆虫学报, 2010, 53(3): 314-322.

Wang C X, Xue M, Bi M J, Li Q L, Hu H Y. Temporal effect of tobacco defense responses to Myzus persicae (Sulzer) (Homoptera: Aphididae) induced by Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) B biotype. Acta Entomologica Sinica, 2010, 53(3): 314-322. (in Chinese)

[18]Inbar M, Doostdar H, Mayer R T. Effects of sessile whitefly nymphs (Homoptera: Aleyrodidae) on leaf-chewing larvae (Lepidoptera: Noctuidae). Environmental Entomology, 1999, 28(3): 353-357.

[19]Inbar M, Doostdar H, Leibee G, Mayer R T. The role of plant  rapidly induced responses in asymmetric interspecific interactions among insect herbivores. Journal of Chemical Ecology, 1999, 25(8): 1961-1979.

[20]祝树德, 陆自强, 陈丽芳, 郁  伟, 张绍军. 温度和食料对斜纹夜蛾种群的影响. 应用生态学报, 2000, 11(1): 111-114.

Zhu S D, Lu Z Q, Chen L F, Yu W, Zhang S J. Effect of temperature and food on Spodoptera litura population. Chinese Journal of Applied Ecology, 2000, 11(1): 111-114. (in Chinese)

[21]Paschold A, Halitschke R, Baldwin I T. Co(i)-ordinating defenses: NaCOI1 mediates herbivore-induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. The Plant Journal, 2007, 51(1): 79-91.

[22]Gordon H T. Quantitative aspects of insect nutrition. Integrative and Comparative Biology, 1968, 8(1): 131-138.

[23]史益敏. β-1,3-葡聚糖酶活性的测定//中国科学院上海植物生理研究所. 现代植物生理学指南. 北京: 科学出版社, 1999: 128-129.

Shi Y M. β-1,3-glucanases determination//Shanghai Institute of Plant Physiology, Chinese Academy of Sciences. Modern Plant Physiological Manual. Beijing: Science Press, 1999: 128-129. (in Chinese)

[24]史益敏. 几丁质酶活性的测定//中国科学院上海植物生理研究所. 现代植物生理学指南. 北京: 科学出版社, 1999: 130-132.

Shi Y M. Chitanases determination//Shanghai Institute of Plant Physiology, Chinese Academy of Sciences. Modern Plant Physiological Manual. Beijing: Science Press, 1999: 130-132. (in Chinese)

[25]Ward K A, Tung P, Lamb N, Abrams S R, Reid D M, Moloney M M, Holbrook L A. Structural requirements for biologically active jasmonates: Induction of protease inhibitors and cotyledon senescence. Plant Growth Regulation, 1999, 27(1): 49-56.

[26]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1/2): 248-254.

[27]Walling L L. The myriad plant responses to herbivores. Journal of Plant Growth Regulation, 2000, 19(2): 195-216.

[28]Kessler A, Baldwin I T. Plant responses to insect herbivory: The emerging molecular analysis. Annual Review of Plant Biology, 2002, 53(1): 299-328.

[29]Inbar M, Gerling D. Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annual Review of Entomology, 2008, 53: 431-448.

[30]Chen M S. Inducible direct plant defense against insect herbivores: A review. Insect Science, 2008, 15: 101-114.

[31]Karban R, Myers J H. Induced plant responses to herbivory. Annual Review of Ecology and Systematics, 1989, 20(1): 331-348.

[32]Kessler A, Baldwin I T. Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in the wild tobacco Nicotiana attenuata. The Plant Journal, 2004, 38(4): 639-649.

[33]Dugravot S, Brunissen L, Létocart E, Tjallingii W F, Vincent C, Giordanengo P, Cherqui A. Local and systemic responses induced by aphids in Solanum tuberosum plants. Entomologia Experimentalis et Applicata, 2007, 123: 271-277.

[34]Srinivasan R, Uthamasamy S. Feeding induced changes in phenolics and pathogenesis-related proteins: implications in host resistance to Bemisia tabaci Genn and Helicoverpa armigera Hub. in tomato accessions. Pest Management in Horticultural Ecosystems, 2004, 10(2): 95-106.

[35]Antony B, Palaniswami M S. Bemisia tabaci feeding induces pathogenesis-related proteins in cassava (Manihot esculenta Crantz). Indian Journal of Biochemistry and Biophysics, 2006, 43: 182-185.

[36]Gorovits R, Akad F, Beery H, Vidavsky F, Mahadav A, Czosnek H. Expression of stress-response proteins upon whitefly-mediated inoculation of Tomato yellow leaf curl virus in susceptible and resistant tomato plants. Molecular Plant-Microbe Interactions, 2007, 20(11): 1376-1383.

[37]Sampson M, Gooday G W. Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology, 1998, 144 (8): 2189-2194.

[38]Inbar M, Doostdar H, Sonoda R M, Leibee G L, Mayer R T. Elicitors of plant defensive systems reduce insect densities and disease incidence. Journal of Chemical Ecology, 1998, 24(1): 135-149.

[39]Zavala J A, Baldwin I T. Fitness benefits of trypsin proteinase inhibitor expression in Nicotiana attenuata are greater than their costs when plants are attacked. BMC Ecology, 2004, 4(1): 11.

[40]Zavala J A, Patankar A, Gase K, Hui D, Baldwin I T. Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuata demonstrates their function as antiherbivore defenses. Plant Physiology, 2004, 134(3): 1181-1190.

[41]Zavala J A, Giri A P, Jongsma M A, Baldwin I T. Digestive duet: midgut digestive proteinases of Manduca sexta ingesting Nicotiana attenuata with manipulated trypsin proteinase inhibitor expression. PLoS One, 3(4): e2008.

[42]Oliveira M R V, Henneberry T J, Anderson P. History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection, 2001, 20(9): 709-723.

[43]Walling LL. Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiology, 2008, 146: 859-866.
[1] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[2] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[3] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[4] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[5] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[6] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[7] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[8] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
[9] WEI YanXia,LI ZhuoRan,ZHANG Bin,YUAN YuJin,YU WeiWei,CHANG RuoKui,WANG YuanHong. Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02 [J]. Scientia Agricultura Sinica, 2021, 54(16): 3451-3460.
[10] SUN XiaoFang,LIU Min,PAN TingMin,GONG GuoShu. Mating Type and Fertility of Cochliobolus heterostrophus Causing Southern Corn Leaf Blight in Sichuan Province [J]. Scientia Agricultura Sinica, 2021, 54(12): 2547-2558.
[11] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[12] SHI TianPei,WANG XinYue,HOU HaoBin,ZHAO ZhiDa,SHANG MingYu,ZHANG Li. Analysis and Identification of circRNAs of Skeletal Muscle at Different Stages of Sheep Embryos Based on Whole Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(3): 642-657.
[13] HUANG MiaoMiao,CHEN WanQuan,CAO ShiQin,SUN ZhenYu,JIA QiuZhen,GAO Li,LIU Bo,LIU TaiGuo. Surveillance and Genetic Diversity Analysis of Puccinia striiformis f. sp. tritici in Gansu and Qinghai Provinces [J]. Scientia Agricultura Sinica, 2020, 53(18): 3693-3706.
[14] XIANG ShunYu,WANG Jing,XIE ZhongYu,SHI Huan,CAO Zhe,JIANG Long,MA XiaoZhou,WANG DaiBin,ZHANG Shuai,HUANG Jin,SUN XianChao. Preparation of A Novel Silver Nanoparticle and Its Antifungal Mechanism Against Alternaria alternata [J]. Scientia Agricultura Sinica, 2020, 53(14): 2885-2896.
[15] AN JunXia,ZHAO Yu,ZHANG ZhengKun,SHI HaiPeng,JI DongMing,CAO HongYi,DU Qian,LI QiYun. Induction of Cold Tolerance in Rice at the Breeding Stage by Gongzhulingmycin [J]. Scientia Agricultura Sinica, 2020, 53(11): 2195-2206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!