Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (11): 2195-2206.doi: 10.3864/j.issn.0578-1752.2020.11.006

• PLANT PROTECTION • Previous Articles     Next Articles

Induction of Cold Tolerance in Rice at the Breeding Stage by Gongzhulingmycin

AN JunXia1,2,ZHAO Yu1,ZHANG ZhengKun1,SHI HaiPeng3,JI DongMing4,CAO HongYi5,DU Qian1(),LI QiYun1()   

  1. 1Institute of Plant Protection, Jilin Academy of Agricultural Sciences/Jilin Key laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast, Ministry of Agriculture and Rural Affairs, Changchun 130033
    2College of Plant Protection, Jilin Agricultural University, Changchun 130118
    3Agricultural Technology Extension Station of Yitong Manchu Autonomous County, Yitong 130700, Jilin
    4Plant Protection Station of Siping City, Siping 136000, Jilin
    5Life Science and Technology Academy, Harbin Normal University, Harbin 150080
  • Received:2019-10-30 Accepted:2019-12-23 Online:2020-06-01 Published:2020-06-09
  • Contact: Qian DU,QiYun LI E-mail:dqzjk@163.com;qyli@cjaas.com

Abstract:

【Objective】The objective of this study is to investigate the effects of gongzhulingmycin on rice seedling growth, cold tolerance genes expression and defense enzyme activities based on chilling stress exposure, and to elucidate the change in cold tolerance induced by gongzhulingmycin at the breeding stage of rice. 【Method】Rice variety ‘Jijing88’ was used as the experimental material, the seed germination and seedling growth were investigated under different temperatures and the critical temperature of seed germination was calculated after seed priming by gongzhulingmycin. The solid fermentation product of gongzhulingmycin was powdered and added into the rice seedling substrate before sowing. Taking ‘Jijing88’ as the experimental material, the rice seedlings were subjected to cold stress treatment in simulated cold environment in late spring at the needle appearance stage of rice. Gradually warmed up and sampled continuously within 1-8 d after treatment and sampled every 7 days when plant temperature raised to 28℃. Taking ‘Jihong 6’ as the experimental material, the rice seedlings were raised in the greenhouse and sampled when the seedlings grew to one leaf at a time. The expression of 4 cold tolerance genes (OsNAC6, OsSADMC, OsETR4 and OsZFP151) under the simulated cold environment in late spring and greenhouse seedling environment was analyzed by real-time quantitative PCR (RT-qPCR). The changes of defense enzyme activities such as superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) in greenhouse seedlings before transplanting were detected. 【Result】The gongzhulingmycin could improve seed germination rate and germination index, shorten mean germination time, and its promoting effect on seedling growth was gradually obvious with the decrease of temperature. G-500x showed the best performance, which reduced the critical temperature of rice seed germination by 4.09%, and the subsequent experimental study was carried out based on this concentration. At the condition of low temperature simulation of the late spring cold, the application of gongzhulingmycin significantly increased the expression of OsNAC6, OsSADMC, OsETR4, and rapid response could be achieved to cope with low temperature stress by accelerating the response speed. The control mainly regulated the response speed and expression of OsZFP151 to cope with low temperature stress, but the expression of OsZFP151 was also increased after gongzhulingmycin application compared to the control. After the rice seedlings were subjected to low temperature stress at the needle appearance stage of rice, the expression peaks of OsNAC6, OsSADMC and OsETR4 in the seedlings treated with gongzhulingmycin appeared 1-2 d earlier than that in the control, and were increased by 38.57%, 74.66% and 130.61%, respectively, compared with the control. The maximum expression of OsZFP151 was 2 d later than that of the control, but the maximum expression was 34.91% higher than that of the control. The optimum added weight of the solid fermentation productive powder of gongzhulingmycin was 8 g·m -2 in rice seedling substrate in the greenhouse seedling raising. When the seedlings grew to one leaf at a time after the addition of gongzhulingmycin, the expression levels of OsNAC6, OsSADMC, OsETR4 and OsZFP151 in the leaves were higher than those in the control group. The expression of OsNAC6, OsSADMC and OsETR4 was significantly increased. When the added weight was 8 g·m -2, the expression level of OsNAC6 was the highest (261.20). When the added weight was 5 g·m -2, the expression level of OsSADMC was the highest, which was increased by 126.30% than that of the control. When the added weight was 8 g·m -2, the expression level of OsETR4 was the highest, which was increased by 359.81% than that of the control. Gongzhulingmycin could increase the defense enzyme activities of rice seedlings at the four-leaf stage before transplanting. The activities of SOD, POD, PPO and PAL were all increased, especially the SOD and PPO activities increased by 57.18% and 28.53%, respectively. 【Conclusion】Proper application of gongzhulingmycin before sowing can decrease the critical temperature of germination, promote the growth of seedlings, significantly improve the seedling quality, increase the expression levels of cold tolerance genes, improve the response speed to low temperature stress and raise defense enzyme activities to stimulate the cold tolerance in rice seedlings.

Key words: gongzhulingmycin, rice, cold tolerance, gene expression, defense enzyme activity

Table 1

Primers of 4 cold tolerance genes for RT-qPCR"

基因
Gene
功能
Function
引物序列
Primer sequence
OsNAC6[24] 转录因子Transcription factor F: 5′TCCGCCCGCAAGAGAACAG3′
R: 5′ACCCCCACCATCGGCTTCCT3′
OsSADMC[2] S-腺苷甲硫氨酸脱羧酶S-adenosylmethionine decarboylase F: 5′ATGGTGAACCCTGCTCCT3′
R: 5′GCAGAAGGCAAAGGAAAT3′
OsETR4[25] 乙烯受体Ethylene receptor F: 5′GTCTTCCACCTGCTGCTTG3′
R: 5′CCTCTCTTCACCCACATTGC3′
OsZFP151[26] C2H2型锌指蛋白C2H2 zinc finger protein F: 5′GCTCTCCATCAGTTGCTCCT3′
R: 5′CTTCATCATCCCACACCAGA3′
OsActin[27] 内参基因Internal reference gene F: 5′CCTGGCAGTATGAAGGTAGTTG3′
R: 5′GAAGCACTTCATGTGGACGAT3′

Table 2

The effects of gongzhulingmycin on seed germination and seedling growth"

16℃ 18℃ 20℃ 22℃ 24℃ 26℃
发芽时间Germination time (d) CK 8.81±0.04a 9.10±0.06a 6.70±0.02a 5.95±0.01a 5.89±0.02b 3.91±0.01a
Y-1000X 7.53±0.04 b 8.98±0.09a 6.86±0.04a 5.99±0.02a 6.03±0.01a 3.89±0.00ab
G-500X 8.21±0.17ab 8.98±0.14a 6.54±0.06b 5.96±0.04a 5.97±0.04ab 3.87±0.01b
G-1000X 8.75±0.25a 8.98±0.14a 6.54±0.06b 6.06±0.01a 5.99±0.01a 3.92±0.00a
发芽率
Germination rate (%)
CK 71.00±2.00b 78.00±7.51a 91.33±2.91a 97.00±1.00a 88.00±1.15a 96.33±0.33a
Y-1000X 64.00±2.65b 70.00±3.51a 92.00±3.00a 95.00±0.58a 88.67±1.45a 95.33±0.33a
G-500X 79.67±1.45a 79.00±3.61a 92.67±0.67a 94.67±0.33a 89.67±0.33a 96.33±0.33a
G-1000X 69.67±1.33b 77.00±2.31a 91.67±0.89a 94.67±0.33a 85.00±0.58a 96.33±0.33a
发芽指数Germination index CK 58.65±0.85b 81.70±6.81a 64.78±2.16b 134.87±0.42a 127.47±3.27a 156.93±0.82ab
Y-1000X 71.33±4.47ab 74.78±0.53b 70.60±2.28b 132.65±1.89a 114.93±1.02b 158.91±0.96ab
G-500X 81.20±7.64a 83.67±6.90a 84.55±3.08a 133.17±2.66a 121.56±3.88ab 161.91±2.06a
G-1000X 60.33±7.02b 74.67±6.90b 84.55±3.08a 131.74±1.21a 115.13±0.74b 154.19±0.85b
幼苗株高
Seedling height (cm)
CK 0.93±0.16b 1.72±0.48a 3.10±0.24ab 6.51±0.30a 21.50±0.19a 22.73±0.69a
Y-1000X 1.52±0.10a 0.98±0.10a 2.48±0.29b 6.34±0.48a 16.96±0.43b 14.46±0.09b
G-500X 1.25±0.18ab 1.38±0.25a 3.81±0.43a 6.08±0.35a 17.93±1.66b 13.70±0.57bc
G-1000X 1.25±0.18ab 1.01±0.08a 2.63±0.36b 6.06±0.24a 15.80±0.40b 11.69±0.09c
幼苗鲜重
Seedling fresh weight (g)
CK 0.07±0.01b 0.12±0.01a 0.18±0.01a 0.32±0.02a 0.69±0.03a 0.73±0.031a
Y-1000X 0.11±0.00a 0.08±0.01b 0.18±0.002a 0.36±0.03a 0.70±0.04a 0.66±0.02b
G-500X 0.08±0.01b 0.10±0.004ab 0.17±0.01a 0.27±0.02a 0.68±0.02a 0.64±0.02b
G-1000X 0.08±0.01b 0.08±0.001b 0.17±0.01a 0.27±0.02a 0.59±0.02a 0.63±0.01b
幼苗干重
Seedling dry weight (g)
CK 0.009±0.0003b 0.013±0.001a 0.027±0.001a 0.047±0.003ab 0.100±0.006a 0.074±0.002a
Y-1000X 0.019±0.004a 0.008±0.001b 0.026±0.001a 0.054±0.003a 0.100±0.006a 0.081±0.002a
G-500X 0.013±0.001ab 0.013±0.001a 0.029±0.001a 0.046±0.003ab 0.099±0.000a 0.081±0.003a
G-1000X 0.011±0.001ab 0.008±0.001b 0.027±0.001a 0.042±0.003b 0.083±0.003a 0.081±0.002a

Table 3

The effect of gongzhulingmycin on critical temperature of seed germination"

处理
Treatment
回归方程
Regression equation (y=)
相关系数
Correlation coefficient (r)
信度水平
Reliability level (a)
临界温度
Critical temperature (℃)
CK 10.112x-108.78 0.8381 0.01 10.76
Y-1000X 8.8629x-82.253 0.7864 0.05 9.28
G-500X 9.4620x-97.665 0.7181 0.05 10.32
G-1000X 9.7130x-103.54 0.9333 0.01 10.66

Fig. 1

The induction effect of gongzhulingmycin on cold tolerance genes expression of rice seedlings under the simulated cold environment in late spring"

Fig. 2

The induction effect of gongzhulingmycin on cold tolerance genes expression of rice seedlings in the seedling raising in production"

Fig. 3

The effects of gongzhulingmycin on plant oxidase activities of the rice seeding"

Fig. 4

The effects of gongzhulingmycin on activities of key enzymes in phenylpropanoid metabolism of the rice seeding"

[1] 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯 . 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015,48(17):3404-3414.
doi: 10.3864/j.issn.0578-1752.2015.17.008
ZHU D F, ZHANG Y P, CHEN H Z, XIANG J, ZHANG Y K . Innovation and practice of high-yield rice cultivation technology in China. Scientia Agricultura Sinica, 2015,48(17):3404-3414. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.17.008
[2] 胡晓晨, 张婷, 杨圣, 秦巧, 石英尧, 王文生, 傅彬英 . 水稻冷胁迫响应基因OsSADMC功能标记的开发和利用. 中国水稻科学, 2015,29(5):475-480.
doi: 10.3969/j.issn.1001-7216.2015.05.004
HU X C, ZHANG T, YANG S, QIN Q, SHI Y Y, WANG W S, FU B Y . Development and application of a functional marker for the cold stress responsive gene OsSADMC. Chinese Journal of Rice Science, 2015,29(5):475-480. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2015.05.004
[3] 马俊 . 丛枝菌根真菌对黄瓜幼苗低温胁迫的缓解效应及其调控机理[D]. 杨凌: 西北农林科技大学, 2016.
MA J . Alleviative effects and its mechanism of exogenous arbuscular mycorrhizal fungi (AMF) on cucumber seedlings under cold stress[D]. Yangling: Northwest A&F University, 2016. ( in Chinese)
[4] 乌凤章, 王贺新, 徐国辉, 张自川 . 木本植物低温胁迫生理及分子机制研究进展. 林业科学, 2015,51(7):116-128.
doi: 10.11707/j.1001-7488.20150713
WU F Z, WANG H X, XU G H, ZHANG Z C . Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress. Scientia Silvae Sinicae, 2015,51(7):116-128. (in Chinese)
doi: 10.11707/j.1001-7488.20150713
[5] SHEIKH S, NOH J, SEONG M H, HJUNG G T, KIM J M . Consequences of chilling stress on watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] germplasm lines at seedling stage. Horticulture, Environment, and Biotechnology, 2015,56(1):79-88.
doi: 10.1007/s13580-015-0174-2
[6] HAWRYLAK-NOWAK B, MATRASZEK R, SZYMAŃSKA M . Selenium modifies the effect of short-term chilling stress on cucumber plants. iological Trace Element Research, 2010,138(1/3):307-315.
[7] 项洪涛, 齐德强, 李琬, 郑殿峰, 王月溪, 王彤彤, 王立志, 曾宪楠, 杨纯杰, 周行, 赵海东 . 低温胁迫下外源ABA对开花期水稻叶鞘激素含量及抗寒生理的影响. 草业学报, 2019,28(4):81-94.
XIANG H T, QI D Q, LI W, ZHENG D F, WANG Y X, WANG T T, WANG L Z, ZHENG X N, YANG C J, ZHOU H, ZHAO H D . Effect of exogenous ABA on the endogenous hormone levels and physiology of chilling resistance in the leaf sheath of rice at the flowering stage under low temperature stress. Acta Prataculturae Sinica, 2019,28(4):81-94. (in Chinese)
[8] XIANG H T, WANG T T, ZHENG D F, WANG L Z, FENG Y J, LUO Y, LI R, LI Z J, MENG Y, LI W, WANG L M, YANG C J . ABA pretreatment enhances the chilling tolerance of a chilling-sensitive rice cultivar. Brazilian Journal of Botany, 2017,40(4):853-860.
doi: 10.1007/s40415-017-0409-9
[9] 董春娟, 李亮, 曹宁, 尚庆茂, 张志刚 . 苯丙氨酸解氨酶在诱导黄瓜幼苗抗寒性中的作用. 应用生态学报, 2015,26(7):2041-2049.
DONG C J, LI L, CAO N, SHANG Q M, ZHANG Z G . Roles of phenylalanine ammonia-lyase in low temperature tolerance in cucumber seedlings. Chinese Journal of Applied Ecology, 2015,26(7):2041-2049. (in Chinese)
[10] JANDA T, MAJLÁTH I, SZALAI G, . Interaction of temperature and light in the development of freezing tolerance in plants. Journal of Plant Growth Regulation, 2014,33(2):460-469.
doi: 10.1007/s00344-013-9381-1
[11] CHEN J H, TIAN Q Q, PANG T, JIANG L B, WU R L, XIA X L, YIN W L . Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica. BMC Genomics, 2014,15:326.
[12] CUEVAS J C, LÓPEZ-COBOLLO R, ALCÁZAR R, ZARZA X, KONCZ C, ALTABELLA T, SALINAS J, TIBURCIO A F, FERRANDO A . Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiology, 2008,148(2):1094-1105.
doi: 10.1104/pp.108.122945
[13] 徐秋曼, 陈宏, 高虹, 程景胜 . 多效唑提高水稻幼苗抗低温能力的机理初探. 西北植物学报, 2002,22(5):1236-1241.
XU Q M, CHEN H, GAO H, CHENG J S . The biochemical mechanism study on improvement of PP333 on the cold resistance of the rice seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2002,22(5):1236-1241. (in Chinese)
[14] 刘润进, 唐明, 陈应龙 . 菌根真菌与植物抗逆性研究进展. 菌物研究, 2017,15(1):70-88.
LIU R J, TANG M, CHEN Y L . Recent advances in the study of mycorrhizal fungi and stress resistance of plants. Journal of Fungal Research, 2017,15(1):70-88. (in Chinese)
[15] THEOCHARIS A, CLEMÉNT C BARKA E A . Physiological and molecular changes in plants grown at low temperatures. Planta, 2012,235(6):1091-1105.
doi: 10.1007/s00425-012-1641-y
[16] GARG N, SINGLA P . Naringenin- and Funneliformis mosseae- mediated alterations in redox state synchronize antioxidant network to alleviate oxidative stress in Cicer arietinum L. genotypes under salt stress. Journal of Plant Growth Regulation, 2015,34(3):595-610.
doi: 10.1007/s00344-015-9494-9
[17] 隋丽, 徐文静, 杜茜, 陈光, 董英山, 李启云 . 放线菌769发酵液对水稻体内主要防御酶活性的影响. 吉林农业大学学报, 2009,31(4):382-384, 389.
SUI L, XU W J, DU Q, CHEN G, DONG Y S, LI Q Y . Effect of actinomycetes 769 fermentation products on main defense enzyme activity of rice. Journal of Jilin Agricultural University, 2009,31(4):382-384, 389. (in Chinese)
[18] 张振鲁, 隋丽, 张佳诗, 李启云, 王金刚, 汪洋洲, 盛岩, 杜茜 . 链霉菌769诱导对百日草抗病性的影响. 中国植保导刊, 2013,33(12):14-17.
ZHANG Z L, SUI L, ZHANG J S, LI Q Y, WANG J G, WANG Y Z, SHENG Y, DU Q . Inducing effect of Streptomyces gongzhulingensis 769 on systemic resistance of Zinnia elegans. China Plant Protection, 2013,33(12):14-17. (in Chinese)
[19] 安俊霞, 李晓光, 汪洋洲, 张正坤, 马嵩岳, 张静, 杨会营, 文松, 杜茜, 李启云 . 公主岭霉素在水稻育秧期应用技术研究. 东北农业科学, 2019,44(2):28-33.
AN J X, LI X G, WANG Y Z, ZHANG Z K, MA S Y, ZHANG J, YANG H Y, WEN S, DU Q, LI Q Y . High efficiency application technology of gongzhulingmycin during rice seedling stage. Journal of Northeast Agricultural Sciences, 2019,44(2):28-33. (in Chinese)
[20] 吉林省农科院植保所. 代汞拌种剂农抗769. 农业科技通讯, 1978(2):32.
Institute of Plant Protection, Jilin Academy of Agricultural Sciences. Mercury seed dressing with Streptomyces gongzhulingensis n. var.. Bulletin of Agricultural Science and Technology, 1978(2):32. (in Chinese)
[21] 吴江 . 吉林地区甜玉米种子低温发芽临界温度的研究. 种子, 2018,37(3):96-97, 119.
WU J . Study on the critical temperature of germination of sweet corn seed in Jilin region. Seed, 2018,37(3):96-97, 119. (in Chinese)
[22] 曾霞, 王彦荣, 胡小文 . 垂穗披碱草种子的萌发适宜温度及温度阈值. 草业科学, 2011,28(6):988-992.
ZENG X, WANG Y R, HU X W . Research on seed germination optimum temperature and temperature threshold of Elymus nutans. Pratacultural Science, 2011,28(6):988-992. (in Chinese)
[23] LIVAK K, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262
[24] LEE D K, CHUNG P J, JEONG J S, JANG G, BANG S W, JUNG H, KIM Y S, HA S H, CHOI Y D, KIM J K . The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnology Journal, 2017,15(6):754-764.
doi: 10.1111/pbi.2017.15.issue-6
[25] YAU C P, WANG L, YU M, ZEE S Y, YIP W K . Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions. Journal of Experimental Botany, 2004,55(397):547-556.
doi: 10.1093/jxb/erh055
[26] 黄凯 . 水稻C2H2型转录因子OsZFP151在低温胁迫中的功能研究[D]. 长春: 吉林大学, 2017.
HUANG K . Functional analysis of C2H2 transcription factor OsZFP151 in rice (Oryza sativa L.) under low temperature stress[D]. Changchun: Jilin University, 2017. ( in Chinese)
[27] 关可兴 . 水稻耐冷性相关转录因子OsbZIP32的功能分析[D]. 长春: 吉林大学, 2015.
GUAN K X . Functional analysis of transcriptional factor, OsbZIP32 for cold tolerance in rice[D]. Changchun: Jilin University, 2015. ( in Chinese)
[28] 麦麦提艾力·热合曼, 海利力·库尔班, 郭立华, 邱德文 . 灰霉菌激活蛋白诱导抗病相关的酶活性提高番茄抗病性. 中国生物防治学报, 2014,30(6):780-786.
RAHMAN M, KURBAN H, GUO L H, QIU D W . Botrytis cinerea activator protein induce resistance-related enzyme activities and enhancement of disease resistance in tomato plants. Chinese Journal of Biological Control, 2014,30(6):780-786. (in Chinese)
[29] 原向阳, 郭平毅, 张丽光, 王鑫, 赵锐, 郭秀, 宋喜娥 . 干旱胁迫下草甘膦对抗草甘膦大豆幼苗保护酶活性及脂质过氧化作用的影响. 中国农业科学, 2010,43(4):698-705.
YUAN X Y, GUO P Y, ZHANG L G, WANG X, ZHAO R, GUO X, SONG X E . Glyphosate and post-drought rewatering on protective enzyme activities and membrane lipid peroxidation in leaves of glyphosate-resistant soybean [glycine max (L.) Merr.] seedlings. Scientia Agricultura Sinica, 2010,43(4):698-705. (in Chinese)
[30] 郭彩明, 陈宗明, 陈春丽 . 精氨酸脱羧酶基因AtADC2通过调节超氧化物歧化酶和过氧化氢酶活性增强拟南芥耐盐性. 植物生理学报, 2015,51(7):1067-1074.
GUO C M, CHEN Z M, CHEN C L . AtADC2 enhances salt tolerance through regulating activities of superoxide dismutase and catalase in Arabidopsis thaliana. Plant Physiology Journal, 2015,51(7):1067-1074. (in Chinese)
[31] KUMAR B, VERMA S K, SINGH H P . Effect of temperature on seed germination parameters in Kalmegh (Andrographis paniculata Wall.ex Nees.). Industrial Crops and Products, 2011,34(1):1241-1244.
doi: 10.1016/j.indcrop.2011.04.008
[32] 刘雪梅, 尚庆茂, 张志刚 . 辣椒不同品种种子萌芽期耐低温性及评价方法研究. 中国生态农业学报, 2010,18(3):521-527.
LIU X M, SHANG Q M, ZHANG Z G . Low-temperature tolerance of pepper at germination stage and its evaluation method. Chinese Journal of Eco-Agriculture, 2010,18(3):521-527. (in Chinese)
[33] 郭仰东, 张磊, 李双桃, 曹芸运, 齐传东, 王晋芳 . 蔬菜作物应答非生物逆境胁迫的分子生物学研究进展. 中国农业科学, 2018,51(6):1167-1181.
doi: 10.3864/j.issn.0578-1752.2018.06.015
GUO Y D, ZHANG L, LI S T, CAO Y Y, QI C D, WANG J F . Progresses in research on molecular biology of abiotic stress responses in vegetable crops. Scientia Agricultura Sinica, 2018,51(6):1167-1181. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.06.015
[34] NAKASHIMA K, TRAN L S, VAN NGUYEN D, FUJITA M, MARUYAMA K, TODAKA D, ITO Y, HAYASHI N, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K . Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal, 2007,51(4):617-630.
doi: 10.1111/j.1365-313X.2007.03168.x
[35] KUSANO T, BERBERICH T, TATEDA C, TAKAHASHI Y . Polyamines: Essential factors for growth and survival. Planta, 2008,228(3):367-381.
doi: 10.1007/s00425-008-0772-7
[36] ROYA M, WU R . Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Science, 2002,163(5):987-992.
doi: 10.1016/S0168-9452(02)00272-8
[37] 张楠楠, 薛冬, 崔晓霞, 赵晋铭, 郭娜, 王海棠, 邢邯 . 大豆组成型三重反应基因GmCTR1的克隆与功能分析. 中国农业科学, 2017,50(16):3082-3091.
doi: 10.3864/j.issn.0578-1752.2017.16.003
ZHANG N N, XUE D, CUI X X, ZHAO J M, GUO N, WANG H T, XING H . Cloning and functional analysis of the GmCTR1 in soybean. Scientia Agricultura Sinica, 2017,50(16):3082-3091. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.16.003
[38] 茹京娜, 于太飞, 陈隽, 陈明, 周永斌, 马有志, 徐兆师, 闵东红 . 小麦锌指转录因子TaDi19A对低温的响应及其互作蛋白的筛选. 中国农业科学, 2017,50(13):2411-2422.
doi: 10.3864/j.issn.0578-1752.2017.13.001
RU J N, YU T F, CHEN J, CHEN M, ZHOU Y B, MA Y Z, XU Z S, MIN D H . Response of wheat zinc-finger transcription factor TaDi19A to cold and its screening of interacting proteins. Scientia Agricultura Sinica, 2017,50(13):2411-2422. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.13.001
[39] 侯思宇, 孙朝霞, 郭彬, 王玉国, 李贵全, 韩渊怀 . 大豆两个C2H2型转录因子基因序列特征及表达分析. 植物生理学报, 2014,50(5):665-674.
HOU S Y, SUN Z X, GUO B, WANG Y G, LI G Q, HAN Y H . Cloning and expression analysis of two C2H2 transcription factors in soybean. Plant Physiology Journal, 2014,50(5):665-674. (in Chinese)
[40] HUANG J, SUN S J, XU D Q, YANG X, BAO Y M, WANG Z F, TANG H J, ZHANG H S . Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochemical and Biophysical Research Communications, 2009,389(3):556-561.
doi: 10.1016/j.bbrc.2009.09.032
[41] RAY P D, HUANG B W, TSUJI Y . Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 2012,24(5):981-990.
doi: 10.1016/j.cellsig.2012.01.008
[42] KORAMUTLA M K, KAUR A, NEGI M, VENKATACHALAM P, BHATTACHARYA R . Elicitation of jasmonate-mediated host defense in Brassica juncea (L.) attenuates population growth of mustard aphid Lipaphis erysimi (Kalt.). Planta 2014,240(1):177-194.
doi: 10.1007/s00425-014-2073-7
[43] 乔俊卿, 张心宁, 梁雪杰, 刘永锋, 刘邮洲 . 枯草芽孢杆菌PTS-394诱导番茄对灰霉病的系统抗性. 中国生物防治学报, 2017,33(2):219-225.
QIAO J Q, ZHANG X N, LIANG X J, LIU Y F, LIU Y Z . Plant system resistance triggered by root-colonizing Bacillus subtilis PTS-394 and its control effect on tomato gray mold. Chinese Journal of Biological Control, 2017,33(2):219-225. (in Chinese)
[44] HAO Z N, WANG L P, HE Y P, LIANG J G, TAO R X . Expression of defense genes and activities of antioxidant enzyme in rice resistance to rice stripe virus and small brown planthopper. Plant Physiology and Biochemistry, 2011,49(7):744-751.
doi: 10.1016/j.plaphy.2011.01.014
[45] 孙璐, 黄瑞冬 . 高粱幼苗保护酶系统对盐胁迫的初期响应. 沈阳农业大学学报, 2014,45(2):134-137.
SUN L, HUANG R D . Responses to salt stress of protective enzyme system in sorghum seedlings. Journal of Shenyang Agricultural University, 2014,45(2):134-137. (in Chinese)
[46] 李春燕, 徐雯, 刘立伟, 杨景, 朱新开, 郭文善 . 低温条件下拔节期小麦叶片内源激素含量和抗氧化酶活性的变化. 应用生态学报, 2015,26(7):2015-2022.
LI C Y, XU W, LIU L W, YANG J, ZHU X K, GUO W S . Changes of endogenous hormone contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage. Chinese Journal of Applied Ecology, 2015,26(7):2015-2022. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[4] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[5] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[6] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[7] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[8] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[9] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[10] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[11] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[12] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[13] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[14] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[15] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!