Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (12): 2547-2558.doi: 10.3864/j.issn.0578-1752.2021.12.006

• PLANT PROTECTION • Previous Articles     Next Articles

Mating Type and Fertility of Cochliobolus heterostrophus Causing Southern Corn Leaf Blight in Sichuan Province

SUN XiaoFang(),LIU Min,PAN TingMin,GONG GuoShu()   

  1. College of Agronomy, Sichuan Agricultural University, Chengdu 611130
  • Received:2020-10-11 Accepted:2020-11-24 Online:2021-06-16 Published:2021-06-24
  • Contact: GuoShu GONG E-mail:sunxiaofang207@163.com;guoshugong@126.com

Abstract:

【Objective】The objective of this study is to clarify the distribution of mating types and fertility of Cochliobolus heterostrophus (anamorph: Bipolaris maydis), and to elucidate the possibility of the sexual reproduction of C. heterostrophus isolates in natural fields.【Method】A total of 544 C. heterostrophus isolates were collected from different geographical regions in Sichuan and Yunnan provinces during 2013-2018. The mating type of these isolates was detected by a multiple PCR method, and two standard tested isolates with high combining ability were screened by cross of MAT1-1 and MAT1-2 isolates. Then the 544 C. heterostrophus isolates were tested for their mating type and fertility with two standard test isolates. The fertility was determined by the development of pseudothecia and asci.【Result】Among the 544 isolates, 286 ones were identified as MAT1-1 and 258 as MAT1-2, accounting for 52.57% and 47.43%, respectively. Chi-square test gave a good fit of 1﹕1 ratio (χ2=1.441, P=0.230), indicating that these two mating types distributed in balance in natural fields. In addition, the investigation also showed that two mating types were present in all sampling locations and they had a basically same population structure in different years. After crossing tested isolates with standard isolates MSRS-2-3 (MAT1-1) and DY-12-1-2 (MAT1-2), the percentage of fertile and sterile isolates was 88.79% and 11.21%, respectively, and an obvious fertility differentiation was observed, which were characterized by 12.32% of high fertile, 27.39% of medium fertile, and 49.08% of low fertile isolates, respectively. Fertility structures of isolates varied in different geographical locations and in different collection years. The frequencies of fertile isolates ranged from 77.88% to 94.87% in 2013-2018. The percentage of fertile isolates in Southern Yunnan was highest up to 100%, followed by those in Northern Sichuan, Central Sichuan, Southern Sichuan and Eastern Sichuan regions, accounting for 93.25%, 89.87%, 83.33% and 79.31%, respectively. The percentage of fertile isolates in Western Sichuan region was lowest (69.23%).【Conclusion】MAT1-1 and MAT1-2 achieved an equilibrium in quantity among C. heterostrophus field populations, and the cross combinations between MAT1-1 and MAT1-2 isolates were generally fertile. Although sexual generation was rarely reported in C. heterostrophus population in natural condition, the current results indicated that cryptic sexual cycle might contribute to the genetic diversity of C. heterostrophus.

Key words: southern corn leaf blight, Cochliobolus heterostrophus, sexual reproduction, mating type, fertility, multiple PCR

Table 1

The fertility grading criteria of C. heterostrophus"

假囊壳数量
Number of pseudothecia (dish)
假囊壳的形成能力等级
Pseudothecium-forming level
每个假囊壳中子囊的数量
Number of asci per pseudothecium
育性等级
Fertility level
>200 高High 0 不育Sterile
1-100 低Low
101-200 中等Medium
>200 高High
100-200 中等
Medium
0 不育Sterile
1-200 低Low
>200 中等Medium
1-100 低Low 0 不育Sterile
≥1 低Low
0 不育Sterile 不育Sterile

Fig. 1

Sexual generation of C. heterostrophus"

Fig. 2

Multiple PCR detection of the mating types of C. heterostrophus"

Table 2

Mating type of C. heterostrophus isolates collected from 17 cities (prefectures) of Sichuan and Xishuangbanna of Yunnan provinces"

采样区
Sampling region
采样点数
Number of collection sites
测试菌株数Number of tested isolates MAT1-1 MAT1-2 MAT1-1﹕MAT1-2
测试菌株数
Number of tested isolates
比例
Percentage
(%)
测试菌株数Number of tested isolates 比例
Percentage
(%)
四川中部
Central Sichuan
成都Chengdu 15 161 85 52.80 76 47.20 1.12﹕1
眉山Meishan 11 66 39 59.09 27 40.91 1.44﹕1
总计Total 26 227 124 54.63 103 45.37 1.2﹕1
四川东部
Eastern Sichuan
内江Neijiang 4 11 7 63.64 4 36.36 1.75﹕1
遂宁Suining 4 11 3 27.27 8 72.73 1﹕2.67
南充Nanchong 6 16 11 68.75 5 31.25 2.2﹕1
广安Guang’an 5 12 5 41.67 7 58.33 1﹕1.4
巴中Bazhong 2 3 2 66.70 1 33.30 2﹕1
达州Dazhou 3 5 2 40.00 3 60.00 1﹕1.5
总计Total 24 58 30 51.72 28 48.28 1.07﹕1
四川西部
Western Sichuan
雅安Yaan 9 11 6 54.55 5 45.45 1.2﹕1
甘孜州Garze 1 2 2 100.00 0 0 /
总计Total 10 13 8 61.54 5 38.46 1.6﹕1
四川南部
Southern Sichuan
自贡Zigong 2 5 3 60.00 2 40.00 1.5﹕1
乐山Leshan 8 40 23 57.50 17 42.50 1.35﹕1
宜宾Yibin 3 7 5 71.43 2 28.57 2.5﹕1
泸州Luzhou 3 14 6 42.86 8 57.14 1﹕1.33
总计Total 16 66 37 56.06 29 43.94 1.28﹕1
四川北部
Northern Sichuan
德阳Deyang 8 84 36 42.86 48 57.14 1﹕1.33
绵阳Mianyang 11 56 29 51.79 27 48.21 1.07﹕1
广元Guangyuan 7 23 15 65.22 8 34.78 1.88﹕1
总计Total 26 163 80 49.08 83 50.92 1﹕1.04
云南南部
Southern Yunnan
西双版纳州Xishuangbanna 1 17 7 41.18 10 58.82 1﹕1.43

Table 3

Reciprocal crossing between different mating type isolates of C. heterostrophus"

测试菌株
Tested isolate
MAT1-2
9-10-7-2 A10 B73-2-2 C33 DY-12-1-2 CZ-1-2 S33-1-1 YN-1-1 YN-3-3 ZJ-10-2
MAT1-1 9-5-1 ++ + + ++ ++ + ++
C24 + ++ ++ +# + + + + ++
MSRS-2-3 ++ ++ ++
CZ-10-2 ++ ++ ++ + ++ ++ ++
D4-4-1 ++ ++ ++ + ++ ++ ++
M17-1-2 ++ ++ ++ ++ ++ ++
T91-1-2 ++ ++ ++ ++ ++ ++ ++
YN-3-2 ++ ++ ++ ++ ++ ++ ++ ++
YN-6-1 ++ ++ ++ ++ ++ ++ ++ ++ ++
ZJ-7-1 ++ ++ ++ ++ ++ ++ ++ ++

Table 4

Fertility of C. heterostrophus isolates collected from 17 cities (prefectures) of Sichuan and Xishuangbanna of Yunnan provinces"

采样区
Sampling region
测试菌
株数
Number of tested isolates
不同假囊壳形成能力的菌株数(出现频率)
Number of isolates with different pseudothecium-forming levels (Frequency, %)
可育菌株数
(出现频率)Number of fertile isolates (Frequency, %)
不同育性水平的菌株数(出现频率)
Number of isolates with different fertility levels (Frequency, %)

High

Medium

Low

Absent

High

Medium

Low
不育
Sterile
四川中部
Central Sichuan
成都Chengdu 161 33 (20.50) 59 (36.65) 65 (40.37) 4 (2.48) 145 (90.06) 21 (13.04) 56 (34.78) 68 (42.24) 16 (9.94)
眉山Meishan 66 11 (16.67) 20 (30.30) 29 (43.94) 6 (9.09) 59 (89.39) 6 (9.09) 19 (28.79) 34 (51.52) 7 (10.61)
总计Total 227 44 (19.38) 79 (34.80) 94 (41.41) 10 (4.41) 204 (89.87) 27 (11.89) 75 (33.04) 102 (44.93) 23 (10.13)
四川东部 Eastern Sichuan 内江Neijiang 11 0 (0) 4 (36.36) 7 (63.63) 0 (0) 11 (100.00) 0 (0) 4 (36.36) 7 (63.63) 0 (0)
遂宁Suining 11 0 (0) 3 (27.27) 8 (72.73) 0 (0) 8 (72.73) 0 (0) 3 (27.27) 5 (45.45) 3 (27.27)
南充Nanchong 16 4 (25.00) 3 (18.75) 8 (50.00) 1 (6.25) 13 (81.25) 3 (18.75) 3 (18.75) 7 (43.75) 3 (18.75)
广安Guang’an 12 2 (16.67) 2 (16.67) 6 (50.00) 2 (16.67) 9 (75.00) 1 (8.33) 3 (25.00) 5 (41.67) 3 (25.00)
巴中Bazhong 3 0 (0) 1 (33.30) 1 (33.30) 1 (33.30) 2 (66.67) 0 (0) 1 (33.33) 1 (33.33) 1 (33.33)
达州Dazhou 5 0 (0) 1 (20.00) 2 (40.00) 2 (40.00) 3 (60.00) 0 (0) 1 (20.00) 2 (40.00) 2 (40.00)
总计Total 58 6 (10.34) 14 (24.14) 32 (55.17) 6 (10.34) 46 (79.31) 4 (6.90) 15 (25.86) 27 (46.55) 12 (20.69)
四川西部Western Sichuan 雅安Yaan 11 4 (36.36) 4 (36.36) 2 (18.18) 1 (9.09) 9 (81.82) 2 (18.18) 2 (18.18) 5 (45.45) 2 (18.18)
甘孜州Garze 2 0 (0) 0 (0) 0 (0) 2 (100.00) 0 (0) 0 (0) 0 (0) 0 (0) 2 (100.00)
总计Total 13 4 (30.77) 4 (30.77) 2 (15.38) 3 (23.08) 9 (69.23) 2 (15.38) 2 (15.38) 5 (38.46) 4 (30.77)
四川南部Southern Sichuan 自贡Zigong 5 0 (0) 5 (100.00) 0 (0) 0 (0) 5 (100.00) 0 (0) 0 (0) 5 (100.00) 0 (0)
乐山Leshan 40 8 (20.00) 9 (22.5) 23 (57.50) 0 (0.00) 35 (87.50) 4 (10.00) 5 (12.50) 26 (65.00) 5 (12.50)
宜宾Yibin 7 2 (28.57) 1 (14.29) 2 (28.57) 2 (28.57) 5 (71.43) 0 (0) 0 (0) 5 (71.43) 2 (28.57)
泸州Luzhou 14 0 (0) 4 (28.57) 7 (50.00) 3 (21.43) 10 (71.43) 0 (0) 4 (28.57) 6 (42.86) 4 (28.57)
总计Total 66 10 (15.15) 19 (28.79) 32 (48.48) 5 (7.58) 55 (83.33) 4 (6.06) 9 (13.64) 42 (63.64) 11 (16.67)
四川北部 Northern Sichuan 德阳Deyang 84 15 (17.86) 35 (41.67) 32 (38.10) 2 (2.38) 80 (95.24) 9 (10.71) 26 (30.95) 45 (53.57) 4 (4.76)
绵阳Mianyang 56 11 (19.64) 17 (30.36) 23 (41.07) 5 (8.93) 51 (91.07) 9 (16.07) 12 (21.43) 30 (53.57) 5 (8.93)
广元Guangyuan 23 5 (21.74) 5 (21.74) 11 (47.83) 2 (8.70) 21 (91.30) 2 (8.70) 5 (21.74) 14 (60.87) 2 (8.70)
总计Total 163 31 (19.02) 57 (34.97) 66 (40.49) 9 (5.52) 152 (93.25) 20 (12.27) 43 (26.38) 89 (54.60) 11 (6.75)
云南南部 Southern Yunnan 西双版纳州Xishuangbanna 17 10 (58.82) 5 (29.41) 2 (11.76) 0 (0) 17 (100.00) 10 (58.82) 5 (29.41) 2 (11.76) 0 (0)

Table 5

Mating type and fertility of C. heterostrophus isolates from corn southern leaf blight during 2013-2018"

采样年份 Sampling year 采样点数 Number of collection sites 测试菌株数 Number of tested isolates MAT1-1菌株数Number of isolates of MAT1-1 MAT1-2菌株数Number of isolates of MAT1-2 MAT1-1﹕MAT1-2 可育菌株数Number of fertile isolates 可育菌株率
Percentage of fertile isolates (%)
不同育性水平的菌株数(出现频率)
Number of isolates with different fertility levels (Frequency, %)

High

Medium

Low
不育
Sterile
2013 29 113 63 50 1.13﹕1 88 77.88 8 (7.08) 23 (20.35) 57 (50.44) 25 (22.12)
2014 9 28 14 14 1﹕1 22 78.57 4 (14.29) 8 (28.57) 10 (35.71) 6 (21.43)
2015 16 60 28 32 1﹕1.14 56 93.33 4 (6.67) 26 (43.33) 26 (43.33) 4 (6.67)
2016 18 39 17 22 1﹕1.29 37 94.87 4 (10.26) 11 (41.03) 22 (43.59) 2 (5.13)
2017 23 215 123 92 1.34﹕1 201 93.49 26 (12.09) 59 (27.44) 116 (53.95) 14 (6.51)
2018 8 89 41 48 1﹕1.17: 79 88.76 21 (23.60) 22 (24.72) 36 (40.45) 10 (11.24)
总计Total 103 544 286 258 1.11﹕1 483 88.79 67 (12.32) 149 (27.39) 267 (49.08) 61 (11.21)

Table 6

Reciprocal crossing between high fertile isolates of C. heterostrophus"

测试菌株
Tested isolate
MAT1-1
CZ-4-1 CZ-1-1 18LS-3-3 D4-1-3 18CZ-3-2 JY-2-1-1 YN-3-2 N1-1 18LS-3-10 GY-4-2-1
MAT1-2 B73-2-2
J-A ++ ++ + + ++ + ++ +
YN-5-3
DJY-1-2A ++ ++ ++ + ++ ++
MY-13-2-2 ++ ++
18CZ-2-2
ZJ-10-2 + ++ + + ++ ++ ++ +
MY-11-2-3 ++
CZ-5-2 ++ ++ ++
RS-1A ++ ++ ++

Table 7

Reciprocal crossing between low fertile isolates of C. heterostrophus"

测试菌株
Tested isolate
MAT1-1
XD-1-2-1 J1-3 WJ-1-3 GY-6-1-2 GY-1-1-1 D4-3-1 X3-1-1 MS-6-1-1 CZ-7-1-1 QL-1-2A MS-7-1-1
MAT1-2 RS-2-2 + + ++ +# + +# ++ +# ++# + ++
18LS-2-5 ++ ++ ++ +# ++ ++ + ++ ++
YLS-3-3 + + ++ +# + +# +# + +
18LS-2-3 ++ ++ + +# ++# +# + +# ++# ++# ++#
GH-5-1-1 ++ + + +# +# +# +# ++# + +
P4-1-1 + + + +# +# +# +# ++# ++
ZJ-8-1 ++ ++ ++ +# ++ ++# ++ ++# ++ ++
JY-1-2-1 + ++ ++ +# ++ + +# ++ ++ ++
[1] ULLSTRUP A J. The impacts of the southern corn leaf blight epidemics of 1970-1971. Annual Review of Phytopathology, 1972,10:37-50.
doi: 10.1146/annurev.py.10.090172.000345
[2] MANAMGODA D S, CAI L, BAHKALI A H, CHUKEATIROTE E, HYDE K D. Cochliobolus: An overview and current status of species. Fungal Diversity, 2011,51(1):3-42.
doi: 10.1007/s13225-011-0139-4
[3] BENGYELLA L, YEKWA E L, NAWAZ K, IFTIKHAR S, TAMBO E, ALISOLTANI A, FETO N A, ROY P. Global invasive Cochliobolus species: Cohort of destroyers with implications in food losses and insecurity in the twenty-first century. Archives of Microbiology, 2018,200(1):119-135.
doi: 10.1007/s00203-017-1426-6
[4] 王利智, 康志钰, 吴毅歆, 周惠萍, 毛自朝, 何月秋. 云南省玉米小斑病菌生理小种的初步鉴定. 云南大学学报(自然科学版), 2010,32(3):352-357.
WANG L Z, KANG Z Y, WU Y X, ZHOU H P, MAO Z C, HE Y Q. Preliminary identification of physiological races of Bipolaris maydis in Yunnan. Journal of Yunnan University (Natural Science Edition), 2010,32(3):352-357. (in Chinese)
[5] 赵聚莹, 蒋晓丽, 贾海民, 李术臣, 石洁, 张海剑. 黄淮海地区玉米小斑病菌生理小种鉴定与评价. 河北农业科学, 2012,16(9):47-49.
ZHAO J Y, JIANG X L, JIA H M, LI S C, SHI J, ZHANG H J. Identification and evaluation of physiological races of Bipolaris maydis in Huanghuihai region. Journal of Hebei Agricultural Sciences, 2012,16(9):47-49. (in Chinese)
[6] 陆宁海, 吴利民, 郎剑锋, 霍云凤, 石明旺. 河南省玉米小斑病菌生理小种鉴定及致病力分化. 湖北农业科学, 2015,54(7):1603-1606.
LU N H, WU L M, LANG J F, HUO Y F, SHI M W. Identification of physiological races and pathogenicity differentiation of Bipolaris maydis in Henan Province. Hubei Agricultural Sciences, 2015,54(7):1603-1606. (in Chinese)
[7] 孔令晓, 赵聚莹, 栗秋生, 王连生, 罗畔池. 河北省玉米小斑病菌生理小种鉴定及群体动态变化. 华北农学报, 2005,20(3):90-93.
KONG L X, ZHAO J Y, LI Q S, WANG L S, LUO P C. Identification and population dynamics of physiological races of Bipolaris maydis in Hebei. Acta Agriculturae Boreali-Sinica, 2005,20(3):90-93. (in Chinese)
[8] WANG M, WANG S Q, MA J, YU C J, GAO J X, CHEN J. Detection of Cochliobolus heterostrophus races in South China. Journal of Phytopathology, 2017,165(10):681-691.
doi: 10.1111/jph.2017.165.issue-10
[9] 甘林, 代玉立, 阮宏椿, 石妞妞, 杜宜新, 陈福如, 杨秀娟. 福建省玉米小斑病菌的致病型及其群体结构分析. 中国农学通报, 2018,34(7):147-151.
GAN L, DAI Y L, RUAN H C, SHI N N, DU Y X, CHEN F R, YANG X J. Pathotype and its population structure of Cochliobolus heterostrophus in Fujian Province. Chinese Agricultural Science Bulletin, 2018,34(7):147-151. (in Chinese)
[10] DAI Y L, GAN L, RUAN H C, SHI N N, DU Y X, CHEN F R, YANG X J. Characterization of natural isolates of Bipolaris maydis associated with mating types, genetic diversity, and pathogenicity in Fujian Province, China. Plant Disease, 2020,104(2):323-329.
doi: 10.1094/PDIS-03-19-0650-RE
[11] NI M, FERETZAKI M, SUN S, WANG X Y, HEITMAN J. Sex in fungi. Annual Review of Genetics, 2011,45:405-430.
doi: 10.1146/annurev-genet-110410-132536
[12] WHITTLE C A, NYGREN K, JOHANNESSON H. Consequences of reproductive mode on genome evolution in fungi. Fungal Genetics and Biology, 2011,48(7):661-667.
doi: 10.1016/j.fgb.2011.02.005
[13] WILKEN P M, STEENKAMP E T, WINGFIELD M J, DE BEER Z W, WINGFIELD B D. Which MAT gene? Pezizomycotina (Ascomycota) mating-type gene nomenclature reconsidered. Fungal Biology Reviews, 2017,31(4):199-211.
doi: 10.1016/j.fbr.2017.05.003
[14] NELSON R R. A major gene locus for compatibility in Cochliobolus heterostrophus. Phytopathology, 1957,47:742-743.
[15] TURGEON B G, BOHLMANN H, CIUFFETTI L M, CHRISTIANSEN S K, YANG G, SCHAFER W, YODER O C. Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Molecular and General Genetics, 1993,238:270-284.
[16] MILLER J S, JOHNSON D A, HAMM P B. Aggressiveness of isolates of Phytophthora infestans from the Columbia Basin of Washington and Oregon. Phytopathology, 1998,88(3):190-197.
doi: 10.1094/PHYTO.1998.88.3.190
[17] VARGAS A M, OCAMPO L M, CÉSPEDES M C, CARREÑO N, GONZÁLEZ A, ROJAS A, ZULUAGA A P, MYERS K, FRY W E, JIMÉNEZ P, BERNAL A J, RESTREPO S. Characterization of Phytophthora infestans populations in Colombia: First report of the A2 mating type. Phytopathology, 2009,99(1):82-88.
doi: 10.1094/PHYTO-99-1-0082
[18] 张晓玉, 张亚玲, 靳学慧, 周弋力, 孟峰, 武菁菁. 黑龙江省稻瘟病菌育性及其交配型分析. 植物保护学报, 2020,47(1):93-100.
ZHANG X Y, ZHANG Y L, JIN X H, ZHOU Y L, MENG F, WU J J. Analysis of the fertility and mating type of rice blast fungus Magnaporthe oryzae in Heilongjiang Province. Journal of Plant Protection, 2020,47(1):93-100. (in Chinese)
[19] SALEH D, XU P, SHEN Y, LI C Y, ADREIT H, MILAZZO J, RAVIGNÉ V, BAZIN E, NOTTÉGHEM J, FOURNIER E, THARREAU D. Sex at the origin: An Asian population of the rice blast fungus Magnaporthe oryzae reproduces sexually. Molecular Ecology, 2012,21(6):1330-1344.
doi: 10.1111/j.1365-294X.2012.05469.x
[20] SALEH D, MILAZZO J, ADREIT H, FOURNIER E, THARREAU D. South-East Asia is the center of origin, diversity and dispersion of the rice blast fungus, Magnaporthe oryzae. New Phytologist, 2014,201(4):1440-1456.
doi: 10.1111/nph.2014.201.issue-4
[21] ZHONG Z H, CHEN M L, LIN L Y, HAN Y J, BAO J D, TANG W, LIN L L, LIN Y H, SOMAI R, LU L, et al. Population genomic analysis of the rice blast fungus reveals specific events associated with expansion of three main clades. The ISME Journal, 2018,12(8):1867-1878.
doi: 10.1038/s41396-018-0100-6
[22] 戴冬青, 王绍新, 刘宁, 贾慧, 曹志艳, 董金皋. 玉米大斑病菌交配型组成鉴定及其有性生殖条件优化. 植物保护学报, 2019,46(3):634-641.
DAI D Q, WANG S X, LIU N, JIA H, CAO Z Y, DONG J G. Identification of mating type and optimization of sexual reproduction conditions of northern leaf blight fungus Setosphaeria turcica. Journal of Plant Protection, 2019,46(3):634-641. (in Chinese)
[23] 代玉立, 甘林, 滕振勇, 杨静民, 祁月月, 石妞妞, 陈福如, 杨秀娟. 玉米大斑病菌和小斑病菌交配型多重PCR检测方法的建立与应用. 中国农业科学, 2020,53(3):527-538.
DAI Y L, GAN L, TENG Z Y, YANG J M, QI Y Y, SHI N N, CHEN F R, YANG X J. Establishment and application of a multiple PCR method to detect mating types of Exserohilum turcicum and Bipolaris maydis. Scientia Agricultura Sinica, 2020,53(3):527-538. (in Chinese)
[24] LU Y Y, LIU K X, LI G F, YAN L B, XIAO S Q, XUE C S. Identification mating-type locus structure and distribution of Cochliobolus lunatus in China. European Journal of Plant Pathology, 2018,151(2):487-500.
doi: 10.1007/s10658-017-1393-4
[25] 乔广行, 李兴红, 黄金宝, 林秀敏, 周莹. 灰葡萄孢交配型基因的分析与检测. 菌物学报, 2015,34(1):108-116.
QIAO G Y, LI X H, HUANG J B, LIN X M, ZHOU Y. Analysis and molecular detection of Botrytis cinerea mating type genes. Mycosystema, 2015,34(1):108-116. (in Chinese)
[26] PEI Y G, TAO Q J, ZHENG X J, LI Y, SUN X F, LI Z F, QI X B, XU J, ZHANG M, CHEN H B, CHANG X L, TANG H M, SUI L Y, GONG G S. Phenotypic and genetic characterization of Botrytis cinerea population from kiwifruit in Sichuan Province, China. Plant Disease, 2019,103(4):748-758.
doi: 10.1094/PDIS-04-18-0707-RE
[27] 史文琦, 龚双军, 曾凡松, 薛敏峰, 杨立军, 喻大昭. 小麦白粉病菌有性生殖与自然群体交配型检测. 植物病理学报, 2016,46(5):645-652.
SHI W Q, GONG S J, ZENG F S, XUE M F, YANG L J, YU D Z. Sexual reproduction and detection of mating-type of Blumeria graminis f. sp. tritici populations. Acta Phytopathologica Sinica, 2016,46(5):645-652. (in Chinese)
[28] SUN X F, QI X B, WANG W, LIU X, ZHAO H N, WU C P, CHANG X L, ZHANG M, CHEN H B, GONG G S. Etiology and symptom of corn leaf spot caused by Bipolaris spp. in Sichuan Province. Pathogens, 2020,9(3):229.
doi: 10.3390/pathogens9030229
[29] 李文强, 王源超, 郑小波. 宁夏稻瘟病菌的交配型与育性. 中国水稻科学, 2007,21(6):650-656.
LI W Q, WANG Y C, ZHENG X B. Mating type and fertility of Magnaporthe grisea population from rice in Ningxia Hui Autonomous Region, China. Chinese Journal of Rice Science, 2007,21(6):650-656. (in Chinese)
[30] HUMAN M P, BARNES I, CRAVEN M, CRAMPTON B G. Lack of population structure and mixed reproduction modes in Exserohilum turcicum from South Africa. Phytopathology, 2016,106(11):1386-1392.
doi: 10.1094/PHYTO-12-15-0311-R
[31] 杨阳, 马双新, 贾慧, 刘微微, 曹志艳, 董金皋. 玉米大斑病菌两性交配型菌株的出现频率及其育性分析. 植物保护学报, 2015,42(6):921-926.
YANG Y, MA S X, JIA H, LIU W W, CAO Z Y, DONG J G. The occurrence and fertility analysis of bisexual strains of Setosphaeria turcica. Journal of Plant Protection, 2015,42(6):921-926. (in Chinese)
[32] MEYLING N V, LUBECK M, BUCKLEY E P, EILENBERG J, REHNER S A. Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and seminatural habitats. Molecular Ecology, 2009,18(6):1282-1293.
doi: 10.1111/mec.2009.18.issue-6
[33] GUO L Y, KO W H. Continuing variation in successive asexual generations of Pythium splendens following sexual reproduction. Mycological Research, 1995,99(11):1339-1344.
doi: 10.1016/S0953-7562(09)81218-5
[34] 胡旭章, 黄梧芳. 玉米小斑病菌(Drechslera maydis)与玉米圆斑病菌(Drechslera carbonum)种间杂交的初步研究. 河北农业大学学报, 1992,15(2):8-12.
HU X Z, HUANG W F. Preliminary study on interspecific crossing of Drechslera (=Helminthosoporium) maydis and Drechslera (=Helminthosoporium) carbonum. Journal of Hubei Agricultural University, 1992,15(2):8-12. (in Chinese)
[35] 王宝华, 李海明, 鲁国东, 王宗华. 稻瘟病菌群体育性分析的主要影响因子研究. 植物病理学报, 2007,37(2):144-150.
WANG B H, LI H M, LU G D, WANG Z H. Factors affecting population fertility analysis of Magnaporthe grises. Acta Phytopathologica Sinica, 2007,37(2):144-150. (in Chinese)
[36] NELSON R R. Genetics of Cochliobolus heterostrophus. II. Genetic factors inhibiting ascospore formation. Mycologia, 1959,51(1):24-30.
doi: 10.1080/00275514.1959.12024792
[37] BRONSON C R. Ascospore abortion in crosses of Cochliobolus heterostrophus heterozygous for the virulence locus Tox1. Genome, 1988,30(1):12-18.
doi: 10.1139/g88-003
[38] RAJU N B. Meiosis and ascospore development in Cochliobolus heterostrophus. Fungal Genetics and Biology, 2008,45(4):554-564.
doi: 10.1016/j.fgb.2007.08.007
[39] WIRSEL S, HORWITZ B, YAMAGUCHI K, YODER O C, TURGEON B G. Single mating type-specific genes and their 3′ UTRs control mating and fertility in Cochliobolus heterostrophus. Molecular and General Genetics, 1998,259(3):272-281.
doi: 10.1007/s004380050813
[40] HORWITZ B A, SHARON A, LU S W, RITTER V, SANDROCK T M, YODER O C, TURGEON B G. A G protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Fungal Genetics and Biology, 1999,26(1):19-32.
doi: 10.1006/fgbi.1998.1094
[41] GANEM S, LU S W, LEE B N, CHOU D Y T, HADAR R, TURGEON B G, HORWITZ B A. G-protein β subunit of Cochliobolus heterostrophus involved in virulence, asexual and sexual reproductive ability, and morphogenesis. Eukaryotic Cell, 2004,3(6):1653-1663.
doi: 10.1128/EC.3.6.1653-1663.2004
[42] WU D, OIDE S, ZHANG N, CHOI M Y, TURGEON B G. ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus. PLoS Pathogens, 2012,8(2):e1002542.
doi: 10.1371/journal.ppat.1002542
[43] WANG W W, WU D L, PAN H Y, TURGEON B G. Vel2 and Vos1 hold essential roles in ascospore and asexual spore development of the heterothallic maize pathogen Cochliobolus heterostrophus. Fungal Genetics and Biology, 2014,70:113-124.
doi: 10.1016/j.fgb.2014.07.010
[44] SUMITA T, IZUMITSU K, TANAKA C. Characterization of the autophagy-related gene BmATG8 in Bipolaris maydis. Fungal Biology, 2017,121(9):785-797.
doi: 10.1016/j.funbio.2017.05.008
[1] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[2] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[3] WeiLi ZHANG,H KOLBE,RenLian ZHANG,DingXiang ZHANG,ZhanGuo BAI,Jing ZHANG,HuaDing SHI. Overview of Soil Survey Works in Main Countries of World [J]. Scientia Agricultura Sinica, 2022, 55(18): 3565-3583.
[4] Chao MA,YuBao WANG,Gang WU,Hong WANG,JianFei WANG,Lin ZHU,JiaJia LI,XiaoJing MA,RuShan CHAI. Research Progress of Direct Straw Return in Anhui Province over the Last Decade [J]. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599.
[5] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[6] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[7] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[8] LI FeiFei,WANG BeiBei,LAI YingFang,YANG FeiYing,YOU MinSheng,HE WeiYi. Knockout of Single Allele of fl(2)d Significantly Decreases the Fecundity and Fertility inPlutella xylostella [J]. Scientia Agricultura Sinica, 2021, 54(14): 3029-3042.
[9] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[10] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[11] DAI YuLi,GAN Lin,TENG ZhenYong,YANG JingMin,QI YueYue,SHI NiuNiu,CHEN FuRu,YANG XiuJuan. Establishment and Application of a Multiple PCR Method to Detect Mating Types of Exserohilum turcicum and Bipolaris maydis [J]. Scientia Agricultura Sinica, 2020, 53(3): 527-538.
[12] ZHENG FuLi,LIU Ping,LI GuoSheng,ZHANG BoSong,LI Yan,WEI JianLin,TAN DeShui. Organic-Inorganic Coordinated Regulation to Wheat-Maize Double Crop Yield and Soil Fertility [J]. Scientia Agricultura Sinica, 2020, 53(21): 4355-4364.
[13] ZHANG Lu,ZHANG ShuiQing,REN KeYu,LI JunJie,DUAN YingHua,XU MingGang. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities [J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236.
[14] ZHANG WeiLi,KOLBE H,ZHANG RenLian. Research Progress of SOC Functions and Transformation Mechanisms [J]. Scientia Agricultura Sinica, 2020, 53(2): 317-331.
[15] HUANG MiaoMiao,CHEN WanQuan,CAO ShiQin,SUN ZhenYu,JIA QiuZhen,GAO Li,LIU Bo,LIU TaiGuo. Surveillance and Genetic Diversity Analysis of Puccinia striiformis f. sp. tritici in Gansu and Qinghai Provinces [J]. Scientia Agricultura Sinica, 2020, 53(18): 3693-3706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!