Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (20): 4170-4179.doi: 10.3864/j.issn.0578-1752.2011.20.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effect of Daily Minimum Temperatures on Sucrose Metabolism of Cotton Fiber During Secondary Wall Thickening in Xinjiang

 TIAN  Jing-Shan, BAI  Yu-Lin, HU  Xiao-Bing, LUO  Hong-Hai, ZHANG  Ya-Li, ZHAO  Rui-Hai, ZHANG  Wang-Feng   

  1. 1.石河子大学农学院/新疆生产建设兵团绿洲生态农业重点实验室
  • Received:2010-12-30 Online:2011-10-15 Published:2011-03-14

Abstract: 【Objective】 It is of great significance to explore the technical approach to reveal underlying mechanisms contributing to cotton fiber strength changes through analyzing the impact of minimum temperature of averages daily on sucrose metabolism, cellulose deposition, and strength formation in Xinjiang.【Method】The impact of different temperatures on the involved substances content in sucrose metabolism during cotton fiber development, and the changes of key enzymes in sucrose metabolism and their correlation with cellulose deposition, were studied through setting different sowing dates. 【Result】 Under normal sowing date, the activities of sucrose synthase (SS) and sucrose phosphate synthase (SPS) in the boll fiber in the middle of plant were high. As a result, sucrose converted completely and cellulose accumulated sustainably and steadily. Thus, cellulose content had high and strength increase. Under postponing sowing date, the boll development suffered low temperature at night. The activity of sucrose phosphate synthase decreased, and the activities of acid invertase (AI) and alkaline invertase (NI) increased. Consequently, fructose increased significantly and cellulose deposition was influenced. 【Conclusion】 During the cotton fiber thickening period, <15.3℃ of average daily minimum temperature influenced the sucrose metabolism enzyme activities, consequently, conversion efficiency of sucrose decreased. Thus, the circulation rate of fructose was lower and fructose was enriched in fibers.

Key words: cotton, cottonfiber, minimumdailytemperature, cellulose, sucrose, fructose

[1]韩祥铭, 刘英欣, 宋宪亮. 陆地棉新种质棉纤维品质性状的遗传分析. 作物学报, 2002, 28(2): 245-248.

Han X M, Liu Y X, Song X L. Genetic analysis for fiber traits of new germplasms in upland cotton. Acta Agronomica Sinica, 2002, 28(2): 245-248. (in Chinese)

[2]王友华, 束红梅, 陈兵林, 许乃银, 赵永仓, 周治国. 不同棉花品种纤维比强度形成的时空差异及其与温度的关系. 中国农业科学, 2008, 41(11): 3865-3871.

Wang Y H, Shu H M, Chen B L, Xu N Y, Zhao Y C, Zhou Z G. Temporal-spatial variation of cotton fiber strength of different cultivars and its relationship with temperature. Scientia Agricultura Sinica, 2008, 41(11): 3865-3871. (in Chinese)

[3]Green C C, Culp T W. Simultaneous improvements of yield, fiber quality, and yarn strength in upland cotton. Crop Science, 1989, 30(1): 66-69.

[4]Martin L K, Haigler C H. Cool temperature hinders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fibers. Cellulose, 2004, 11: 339-349.

[5]Gipson J R, Joham H E. Influence of night temperature on growth and development of cotton (Gossypium birsutum L.). I. fruiting and boll development. Agronomy Journal, 1968, 60(3): 292-295.

[6]Gipson J R, Joham H E. Influence of night temperature on growth and development of cotton (Gossypium birsutum L.). II fiber properties. Agronomy Journal, 1968, 60(3): 296-298.

[7]Haigler C H, Rao N R, Roberts E M, Huang J Y, Upchurch D R, Trolinder N L. Cultured ovules as models for cotton fiber development under low temperatures. Plant Physiology, 1991, 95: 88-96.

[8]韩慧君. 气候生态因素对棉花产量与纤维品质的影响. 中国农业科学, 1991, 24(5): 23-29.

Han H J. Effects of climatic-ecologic factors on cotton yield and fiber quality. Scientia Agricultura Sinica, 1991, 24 (5): 23-29. (in Chinese)

[9]单世华, 孙学振, 周治国, 施 培, 边栋材. 温度对棉纤维强度及超分子结构的影响. 作物学报, 2000, 26(6): 666-672.

Shan S H, Sun X Z, Zhou Z G, Shi P, Bian D C. Effect of temperature on cotton fiber strength and super-molecular structure. Acta Agronomica Sinica, 2000, 26(6): 666-672. (in Chinese)

[10]张丽娟, 熊宗伟, 陈兵林, 薛晓萍, 周治国. 气候条件变化对棉纤维品质的影响. 自然灾害学报, 2006, 15 (2): 79-85.

Zhang L J, Xiong Z W, Chen B L, Xue X P, Zhou Z G. Sensitivity analysis of cotton fiber quality to climate condition. Journal of Natural Disasters, 2006, 15 (2): 79-85. (in Chinese)

[11]刘继华, 尹承佾, 于凤英, 孙清荣, 王永民, 贾景农, 边栋材, 陈学留. 棉花纤维强度的形成机理与改良途径. 中国农业科学, 1994, 27(5): 10-16.

Liu J H, Yin C Y, Yu F Y, Sun Q R, Wang Y M, Jia J N, Bian D C, Chen X L. Formation mechanism and improvement approach of cotton (Gossypium) fiber strength. Scientia Agricultura Sinica, 1994, 27(5): 10-16. (in Chinese)

[12]刘 娟, 宋宪亮, 朱玉庆, 李学刚, 陈二影, 孙学振. 高品质陆地棉蔗糖代谢关键酶活性对纤维品质形成的影响. 作物学报, 2008, 34(10): 1781-1787.

Liu J, Song X L, Zhu Y Q, Li X G, Chen E Y, Sun X Z. Effects of key enzyme activities in sucrose metabolism on fiber quality in high quality upland cotton. Acta Agronomica Sinica, 2008, 34(10): 1781-1787. (in Chinese)

[13]束红梅, 王友华, 陈兵林, 胡宏标, 张文静, 周治国. 棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系. 作物学报, 2007, 33(6): 921-926.

Shu H M, Wang Y H, Chen B L, Hu H B, Zhang W J, Zhou Z G. Genotypic differences in cellulose accumulation of cotton fiber and its relationship with fiber strength. Acta Agronomica Sinica, 2007, 33(6): 921-926. (in Chinese)

[14]Haigler C H, Datcheva M I, Hogan P S, Salnikov V V, Hwang S, Martin K, Delmer D P. Carbon partitioning to cellulose synthesis. Plant Molecular Biology, 2001, 47: 29-51.

[15]Huwyler H R, Franz G, Merier H. Changes in the composition of cotton fiber cell walls during development. Planta, 1979, 146: 635-642.

[16]Abidi N, Hequet E, Cabrales L. Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton ?bers. Cellulose, 2010, 17: 153-160.

[17]Delmer D P, Solomon M, Read S M. Direct photolabeling with [32P]UDP-glucose for identification of a subunit of cotton fiber callose synthase. Plant Physiology, 1991, 95: 556-563.

[18]Carpita N C, Delmer D P. Concentration and metabolic turnover of UDP-Glucose in developing cotton fibers. Biological Chemistry, 1981, 256(1): 308-315.

[19]Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends in Plant Science, 1999, 4(10): 401-407.

[20]Winter H, Huber S C. Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Critical Reviews in Biochemistry and Molecular Biology, 2000, 35(4): 253-289.

[21]蒋光华, 孟亚利, 陈兵林, 卞海云, 周治国. 低温对棉纤维比强度形成的生理机制影响. 植物生态学报, 2006, 30(2): 335-343.

Jiang G H, Meng Y L, Chen B L, Bian H Y, Zhou Z G. Effect of low temperature on physiological mechanisma of cotton fiber strength forming process. Acta Phytoecologica Sinica, 2006, 30(2): 335-343. (in Chinese)

[22]卞海云, 王友华, 陈兵林, 束红梅, 周治国. 低温条件下相关关键酶活性对棉纤维比强度形成的影响. 中国农业科学, 2008, 41(4): 1235-1241.

Bian H Y, Wang Y H, Chen B L, Shu H M, Zhou Z G. Effects of the key enzymes activity on the fiber strength formation under low temperature condition. Scientia Agricultura Sinica, 2008, 41(4): 1235-1241. (in Chinese)

[23]周 青, 王友华, 许乃银, 张传喜, 周治国, 陈兵林. 温度对棉纤维糖代谢相关酶活性的研究. 应用生态学报, 2009, 20(1): 149-156.

Zhou Q, Wang Y H, Xu N Y, Zhang C X, Zhou Z G, Chen B L. Effects of air temperature on enzyme activities of cotton plants related to saccharide metabolism of cotton fiber. Chinese Journal of Applied Ecology, 2009, 20(1): 149-156. (in Chinese)

[24]Roberts E M, Rao N R, Huang J Y, Trolinder N L, Haigler C H. Effects of cycling temperatures on fiber metabolism in cultured cotton

 

ovules. Plant Physiology, 1992, 100: 979-986.

[25]勾 玲, 张旺锋, 李少昆, 张保军, 闫 洁, 李艳军. 新疆棉花纤维发育过程中可溶性糖和纤维素含量的变化及与气象因子的关系. 中国农业科学, 2002, 35(7): 878-882.

Gou L, Zhang W F, Li S K, Zhang B J, Yan J, Li Y J. Dynamic changes of soluble sugar and cellulose during the course of cotton fiber development and correlation with meteorological factor in Xinjiang. Scientia Agricultura Sinica, 2002, 35(7): 878-882. (in Chinese)

[26]过兴先, 曾 伟. 新疆棉区的气温和棉铃发育关系的研究. 作物学报, 1989, 15(3): 202-212.

Guo X X, Zeng W. A study on relationship between temperature and cotton boll development in Xinjiang. Acta Agronomica Sinica, 1989, 15(3): 202-212. (in Chinese)

[27]李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社. 2000.

Li H S. Principles and Techniques of Plant Physiological Experiment. Beijing: Higher Education Press, 2000. (in Chinese)

[28]中国科学院上海植物生理研究所, 上海市植物生理学会. 现代植物生理学实验指南. 北京: 科学出版社, 1999.

Shanghai Plant Physiological Greduate School of Chinese Academy of Sciencer. Contemporary Plant Physiological Experiment Manual. Beijing: Science Press, 1999. (in Chinese)

[29]高俊风. 植物生理学实验指导. 北京: 高等教育出版社. 2006.

Gao J F. Guide for Plant Physiology Experiments. Beijing: Higher Education Press, 2006. (in Chinese)

[30]胡宏标, 张文静, 王友华, 陈兵林, 周治国. 棉纤维加厚发育相关物质对纤维比强度的影响. 西北植物学报, 2007, 27(4): 726-733.

Hu H B, Zheng W J, Wang Y H, Chen B L, Zhou Z G. Matters related with cotton fiber thickening development and fiber strength. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(4): 726-733. (in Chinese)

[31]Guy C L, Hubert J L. Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiology, 1992, 100: 205-508.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] XIE YiTong,ZHANG Fei,SHI Jie,FENG Li,JIANG Li. Effects of Exogenous Sucrose on the Postharvest Quality and Chloroplast of Gynura bicolor D.C [J]. Scientia Agricultura Sinica, 2022, 55(8): 1642-1656.
[4] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[5] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[6] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[7] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[8] WANG LiJian,LUO Cheng,PAN XueFeng,CHEN Xia,CHEN YinJi. Effects of Cellulose Replacing Starch on the Gel Properties of Myofibrillar Protein [J]. Scientia Agricultura Sinica, 2022, 55(11): 2227-2238.
[9] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[10] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[11] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[12] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[13] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[14] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[15] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!