Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (16): 3386-3394.doi: 10.3864/j.issn.0578-1752.2011.16.011

• HORTICULTURE • Previous Articles     Next Articles

Differential Analysis of Flowering Related Genes by cDNA-AFLP in Chrysanthemum

REN  Hong-Yan, SUN  Xia, ZHENG  Cheng-Shu, WANG  Wen-Li, SUN  Xian-Zhi, SHU  Huai-Rui   

  1. 1. 山东农业大学园艺科学与工程学院
    2. 山东农业大学园艺科学与工程学院/作物生物学国家重点实验室
    3. 山东农业大学国家苹果工程技术中心
  • Received:2011-03-23 Revised:2011-05-06 Online:2011-08-15 Published:2011-05-24
  • Contact: Hong-Yan Ren E-mail:renhy1235@163.com

Abstract: 【Objective】Differentially expressed transcripts of the apical buds in chrysanthemum induced by different photoperiod were analyzed and to isolate the flowering related genes.【Method】cDNA-AFLP technique was used to identify differentially expressed transcript-derived fragments (TDFs) in the apical buds of chrysanthemum induced by different photoperiods of long-day (16h/8h, day/night) and short-day (8h/16h, day/night) treatments, and the TDFs were validated, cloned, sequenced and the bioinformation analyzed. 【Result】 A total of 2 917 TDFs were screened by 64 primer combinations, and 835 TDFs were identified differentially expression, including 584 TDFs up regulation and 251 TDFs down regulation. Fifty TDFs were successfully cloned and the sequence was analyzed. The results indicated that 36 TDFs had homology in NCBI database, and 30 of which displayed homology to genes with known functions, 5 no had a match. Functional analysis indicated that 31 TDFs mainly participated in 7 kinds of processes of signal transduction, development, transcription regulation, protein degradation and synthesis, metabolism, stress responses etc. Semi-quantitative RT-PCR analysis with selected transcripts of 6 flowering related genes indicated that the 6 flowering related genes all differentially expressed or up regulated under the short-day conditions, while they all did not express or down regulate under the long-day conditions. These results were similar to those of cDNA-AFLP expression patterns in chrysanthemum.【Conclusion】In this study several flowering related gene pigments were selected by cDNA-AFLP techniques. These novel genes could be used in future for functional analysis and strategies of molecular breeding.

Key words: Chrysanthemum, cDNA-AFLP, TDFs, floral differentiation, flowering related genes

[1]姜  丹, 梁建丽, 陈晓丽, 洪  波, 贾文锁, 赵梁军. 拟南芥花期基因FT转化切花菊‘神马’. 园艺学报, 2010, 37(3): 441-448.

Jiang D, Liang J L,Chen X L,Hong B,Jia W S,Zhao L J. Transformation of Arabidopsis flowering gene FT to from cut chrysanthemum ‘Jinba’ by agrobacterium mediate. Acta Horticulturae Sinica, 2010, 37(3): 441-448.(in Chinese)

[2]Shchennikova A V, Shulga O A, Immink R, Skryabin K G, Angenent G C. Identification and characterization of four chrysanthemum MADS-Box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiology, 2004, 134: 1632-1641.

[3]Chen S, Miao H, Chen F, Jiang B, Lu J, Fang W. Analysis of expressed sequence tags (ESTs) collected from the inflorescence of chrysanthemum. Plant Molecular Biology Reporter, 2009, 27: 503-510.

[4]邵寒霜, 李继红, 郑学勤, 陈守才. 拟南芥Lfy cDNA的克隆及转化菊花的研究. 植物学报, 1999, 41(3): 268-271.

Shao H S, Li J H, Zheng X Q, Chen S C. Cloning of the LFY   cDNA from Arabidopsis thaliana and its transformation to chrysanthemum morifolium. Acta Botanica Sinica, 1999, 41(3): 268-271. (in Chinese)

[5]皮  伟, 李名扬. 根癌农杆菌介导FPF1基因转化菊花的研究. 西南大学学报, 2007, 29(4): 70-73.

Pi W, Li M Y. Preliminary studies on transgenic chrysanthemum with FPF1 gene mediated by Agrobactrium tumefaciens. Journal of Southwest University, 2007, 29(4): 70-73. (in Chinese)

[6]吕晋慧, 吴月亮, 孙  磊, 张启翔. AP1基因转化地被菊品种‘玉人面’的研究. 林业科学, 2007, 43(9): 128-132.

Lü J H, Wu Y L, Sun L, Zhang Q X. Genetic transformation of chrysanthemum morifolium cv. ‘Yu Ren Mian’ with AP1 gene mediated by Agrobacterium tumefaciens. Scientia Silvae Sinicae, 2007, 43(9): 128-132. (in Chinese)

[7]Durrant W E, Rowland O, Piedras P, Hammond-Kosack K E, Jones J D G. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. The Plant Cell, 2000, 12(6): 963-978.

[8]Hsu T W, Tsai W C, Wang D P, Lin S, Hsiao Y Y, Chen W H, Chen H H. Differential gene expression analysis by cDNA- AFLP between flower buds of Phalaenopsis Hsiang Fei cv. H. F. and its somaclonal variant. Plant Science, 2008, 175: 415-422.

[9]余  梅, 江昌俊, 叶爱华, 王朝霞, 朱  林, 邓威威, 高  轩, 宛晓春. 利用cDNA-AFLP技术研究茶树花蕾发育基因差异表达片段.茶叶科学, 2007, 27(3): 259-264.

Yu M, Jiang C J, Ye A H, Wang Z X, Zhu L, Deng W W, Gao X, Wan X C. Analysis of differential gene expression of flower bud of tea plant (Camellia sinensis) by cDNA-AFLP. Journal of Tea Science, 2007, 27(3): 259-264. (in Chinese)

[10]林桂玉, 黄在范, 张翠华, 郑成淑. 菊花花芽分化期超微弱发光及生理代谢的变化. 园艺学报, 2008, 35(12): 1819-1824.

Lin G Y, Huang Z F, Zhang C H, Zheng C S. Changes in ultraweak luminescence intensity, respiration rate and physiological metabolism of chrysanthemum during floral differentiation. Acta Horticulturae Sinica, 2008, 35(12): 1819-1824. (in Chinese)

[11]梁宏伟, 王长忠, 李  忠, 罗相忠, 邹  桂. 聚丙烯酰胺凝胶快速、高效银染方法的建立. 遗传, 2008, 30(10): 1379-1382.

Liang H W, Wang C Z, Li Z, Luo X Z, Zou G. Improvement of the silver-stained technique of polyacrylamide gel electrophoresis. Hereditas, 2008, 30(10): 1379-1382. (in Chinese)

[12]Mouardov A, Cermer F, Couplnad G. Control of flowering time: interacting pathways as a basis for diversity. The Plant cell, 2002, 74: 5111-5130.

[13]Boss P K, Bastow R M, Mylne J S, Dean C. Multiple pathways in the decision to flower: enabling, promoting, and resetting. The Plant Cell, 2004, 16: 518-531.

[14]Hayama R, Agashe B, Luley E, Yano M, Shimamoto K. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in pharbitis. The Plant Cell, 2007, 19: 2988-3000.

[15]Park E, Kim J, Lee Y, Shin J, Oh E, Chung W I, Liu J R, Choi G. Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiology, 2004, 45: 968-997.

[16]Takano M, Inagaki N, Xie X, Yuzurihara N, Nishimura M, Miyao A, Hirochika H. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. The Plant Cell, 2005, 17: 3311-3325.

[17]Ni M, Tepperman J M, Quail P H. PIF3, a phytochrome interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell, 1998, 95: 657-667.

[18]Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail P H. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science, 2004, 305: 1937-1941.

[19]Kost B, Lemichez E, Pius S, Hong Y, Tolias K, Carpenter C, Chua N H. Rac Homologues and compartmentalized sphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. The Journal of Cell Biology, 1999, 145: 317-330.

[20]Deborah P D, Julie R P, Andrawis A, Devid M S. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. Molecular and General Genetics, 1995, 248: 43-51.

[21]Aline H V, Peter K H, Jonathan C. Plant GTPases: the Rhos in bloom. Trends in Cell Biology, 2000, 10: 141-146.

[22]林桂玉, 郑成淑, 孙宪芝, 王文莉. 光周期对菊花花芽分化和内源激素的影响. 山东农业科学, 2008(1): 35-39.

Lin G Y, Zheng C S, Sun X Z, Wang W L. Effects of photoperiod on floral bud differentiation and contents of endogenous hormones in chrysanthemum. Shandong Agricultural Sciences, 2008(1): 35-39.(in Chinese)

[23]王文莉, 王秀峰, 郑成淑, 朱翠英, 林桂玉. A23187和EGTA对光周期诱导菊花成花及其过程中叶片Ca2+ 分布和碳水化合物的影. 应用生态学报, 2010, 21( 3): 675-682.

Wang W L, Wang X F, Zheng C S, Zhu C Y, Lin G Y. Effects of Ca2+-carrier A23187 and Ca2+-chelator EGTA on the flower formation of chrysanthemum under photoperiodic induction and the Ca2+ distribution and carbohydrate contents in leaves during the flower formation. Chinese Journal of Applied Ecology, 2010, 21(3): 675-682. (in Chinese)

[24]田素波, 郭春晓, 郑成淑. 光周期诱导植物成花的分子调控机制. 园艺学报, 2010, 37(2): 325-330.

Tian S B, Guo C X, Zheng C S. Molecular mechanism of controlling flower formation by photoperiod inducement in plants. Acta Horticulturae Sinica, 2010, 37(2): 325-330. (in Chinese)

[25]Jack T. New members of the floral organ identity AGAMOUS pathway. Trends in Plant Science, 2002, 7(7): 286-287.

[26]Chen X M, Liu J, Cheng Y L, Jia D X. HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development, 2002, 129: 1085-1094.

[27]Xie G, West T P. Citric acid production by Aspergillus niger ATCC9142 from a treated ethanol fermentation co-product using solid-state fermentation. Letters in Applied Microbiology, 2009, 48: 639-644.

[28]Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K. Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiology, 2001, 127: 252-261.

[29]He Z, Zhu Q, Dabi T, Li D, Weigel D, Lamb C J. Transformation of rice with the Arabidopsis floral regulator LFY causes early heading. Transgenic Research, 2000, 9: 223-227.
[1] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[2] BI MengMeng,LIU Di,GAO Ge,ZHU PengFang,MAO HongYu. CmWRKY15-1 Regulates Resistance of Chrysanthemum White Rust Through Salicylic Acid Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(3): 619-628.
[3] MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642.
[4] LI JiaWei,SU JiangShuo,ZHANG Fei,FANG WeiMin,GUAN ZhiYong,CHEN SuMei,CHEN FaDi. Construction of Core Collection of Traditional Chrysanthemum morifolium Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2021, 54(16): 3514-3526.
[5] MA WanRu,FANG WeiMin,WANG HaiBin,ZHANG Fei,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Establishment of Appraisal System for the Stem and Branch Characteristics and Varieties Evaluation of Spray Cut Chrysanthemum [J]. Scientia Agricultura Sinica, 2019, 52(14): 2515-2524.
[6] WEN LiZhu, SUN Xia, FAN HongMei, GUO YunHui, YU YuanYuan, REN Hong, WANG WenLi, ZHENG ChengShu. Cloning and Functional Verification of AINTEGUMENTA Gene in Chrysanthemum [J]. Scientia Agricultura Sinica, 2018, 51(9): 1771-1782.
[7] ZHAO QianRu, ZHONG XingHua, ZHANG Fei, FANG WeiMin, CHEN FaDi, TENG NianJun. Heterosis and Mixed Genetic Analysis of Green-Center Trait of Spray Cut Chrysanthemum [J]. Scientia Agricultura Sinica, 2018, 51(5): 964-976.
[8] GUO YunHui, YU YuanYuan, WEN LiZhu, SUN CuiHui, SUN XianZhi, WANG WenLi, SUN Xia, ZHENG ChengShu. Molecular Basis of the Effects of Nitrate Signal on Root Morphological Structure Changes of Chrysanthemum [J]. Scientia Agricultura Sinica, 2017, 50(9): 1684-1693.
[9] HAN Shuang, CHEN Su-mei, JIANG Jia-fu, FANG Wei-min, GUAN Zhi-yong, CHEN Fa-di. Hormone Levels and Gene Expression Analysis of Chrysanthemum Cultivar ‘Puma Sunny’ Under Low Light Intensity [J]. Scientia Agricultura Sinica, 2015, 48(2): 324-333.
[10] LOU Wang-Huai, AN Juan, SONG Ai-Ping, CHEN Su-Mei, JIANG Jia-Fu, CHEN Fa-Di, FANG Wei-Min, GUAN Zhi-Yong. Cloning and Expression Analysis of Eukaryotic Translation Initiation Factor 4E Gene and Screening of the Interactive Protein from Chrysanthemum×morifolium [J]. Scientia Agricultura Sinica, 2013, 46(9): 1881-1891.
[11] LUAN Zhao-Jie, CAO Yuan-Yin, LI Tian-Ya, CHEN Si, CHEN Xiu-Mei, ZHU Gui-Qing, LI Wei-Hua. cDNA-AFLP Analysis of Differentially Expressed Resistant Genes of Minn2761 [J]. Scientia Agricultura Sinica, 2013, 46(23): 5058-5065.
[12] WANG Liang, WANG Chu-Chu, JIANG Jia-Fu, CHEN Su-Mei, FANG Wei-Min, TENG Nian-Jun, GUAN Zhi-Yong, LIAO Yuan, CHEN Fa-Di. Interspecific Hybridization Between Chrysanthemum morifolium ‘Nannongyinshan’ and C. zawadskii and Identification of Waterlogging Tolerance of Their Hybrid [J]. Scientia Agricultura Sinica, 2013, 46(20): 4328-4335.
[13] CAO Shi-Xian, CHENG Xi, JIANG Zheng-Zhong, SHENG Liang, SHANG Guan-Ming-Zhu, DENG Wei-Wei, WEI Chao-Ling. Differential Genes Expression in Tea Plant (Cameilla sinensis L.) Induced by Ectropis oblique Feeding Based on cDNA-AFLP [J]. Scientia Agricultura Sinica, 2013, 46(19): 4119-4130.
[14] YANG Rui-Xian, FAN Xiao-Jing, QIU Si-Xin, CAI Xue-Qing, HU Fang-Ping. cDNA-AFLP Analysis of Differential Gene Expression in Pepper Inoculated with Endophytic Bacillus amyloliquefaciens Fy11 [J]. Scientia Agricultura Sinica, 2013, 46(12): 2449-2458.
[15] LUO Xin-Yan, WANG Chen, DAI Si-Lan, LI Bao-Qin, LIU Qian-Qian, ZHU Jun, LU Jie. Genetic Diversity of Large-Flowered Chrysanthemum Cultivars Revealed by ISSR Analysis [J]. Scientia Agricultura Sinica, 2013, 46(11): 2394-2402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!