Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (12): 2449-2458.doi: 10.3864/j.issn.0578-1752.2013.12.006

• PLANT PROTECTION • Previous Articles     Next Articles

cDNA-AFLP Analysis of Differential Gene Expression in Pepper Inoculated with Endophytic Bacillus amyloliquefaciens Fy11

 YANG  Rui-Xian, FAN  Xiao-Jing, QIU  Si-Xin, CAI  Xue-Qing, HU  Fang-Ping   

  1. 1.College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002
    2.Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou 350002
  • Received:2012-12-25 Online:2013-06-15 Published:2013-04-06

Abstract: 【Objective】The objective of this study is to analyze extensive transcription profiling of pepper seedlings inoculated with an endophytic bacterial strain, Bacillus amyloliquefaciens Fy11, and elucidate the molecular mechanism of endophytic Bacillus and plant interaction.【Method】cDNA-AFLP technique was used to conduct transcription profiling of pepper seedlings across five sampling time points after inoculation with Fy11. The validation of cDNA-AFLP expression patterns was analyzed by qRT-PCR.【Result】 A total of 18 620 transcript derived fragments (TDFs) were obtained using cDNA-AFLP with 256 primer pairs, 353 (1.89%) displayed altered expression patterns after inoculation. Two-hundred and fifty seven differentially expressed TDFs produced reliable sequences after cloning and sequencing. Two-hundred and twenty nine expressed sequence tags (ESTs) of unigenes were obtained after assembling, of which 144 showed up-regulated and 85 down-regulated. Blastx analysis and functional annotations were then performed and the results revealed that the 156 ESTs had predicted gene products mainly implicated in energy (10.92%), metabolism and disease/defense (each accounted for 8.73%), signal transduction (7.42%), transporter (6.99%), cell structure (6.55%), transcription (5.68%), cell growth (3.93%), protein destination and storage (3.49%), protein synthesis (2.18%), secondary metabolism and intracellur traffic (each accounted for 1.75%). The 65 ESTs (28.38% of the sequenced total 229 ESTs) had no match to known genes, and the 8 ESTs (3.49% of the sequenced total 229 ESTs) were highly homologous to unknown functional proteins. Ten differential genes related to disease/defense, transcription, and signal transduction were chosen for further qRT-PCR expression patterns, which confirmed the cDNA-AFLP profiles. 【Conclusion】 Endophytic bacteria and plant interaction involved in multifaceted biochemical and physiological reactions, including concerted regulation of the genes involved in different pathways, like disease/defense, transcription, protein metabolism, signal transduction, as well as abiotic stresses. These results provide information for further elucidation of molecular mechanism of endophytic bacteria and plant interaction.

Key words: Capsicum annuum , Bacillus amyloliquefaciens , interaction , gene expression , cDNA-AFLP , qRT-PCR

[1]Ristaino J B, Johnston S A. Ecologically based approaches to management of phytophthora blight on bell pepper. Plant Disease, 1999, 83(12): 1080-1089.

[2]Choudhary D K, Johri B N. Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiological Research, 2009, 164(5): 493-513.

[3]Lodewyckx C, Vangronsveld J, Porteous F, Moore E R B, Taghavi S, Mezgeay M, van der Lelie D. Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences, 2002, 21(6): 583-606.

[4]Bakker P A, Pieterse C M, van Loon L C. Induced systemic resistance by fluorescent Pseudomonas spp.. Phytopathology, 2007, 97(2): 239-243.

[5]Conn V M, Walker A R, Franco C M. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2008, 21(2): 208-218.

[6]Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S. Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Molecular Plant-Microbe Interactions, 2005, 18(5): 385-396.

[7]Lim K A, Shamsuddin Z H, Ho C L. Transcriptomic changes in the root of oil palm (Elaeis guineensis Jacq.) upon inoculation with Bacillus sphaericus UPMB10. Tree Genetics & Genomes, 2010, 6(5): 793-800.

[8]Vinagre F, Vargas C, Schwarcz K, Cavalcante J, Nogueira E M, Baldani J I, Ferreira P C, Hemerly A S. SHR5: a novel plant receptor kinase involved in plant-N2-fixing endophytic bacteria association. Journal of Experimental Botany, 2006, 57(3): 559-569.

[9]杨瑞先, 陶玉凤, 宋美仙, 胡方平. 银杏内生细菌防治辣椒疫病研究. 中国生物防治学报, 2012, 28(4): 552-559.

Yang R X, Tao Y F, Song M X, Hu F P. Inhibition of endophytic bacterial strains isolated from Ginkgo biloba against phytophthora blight of pepper. Chinese Journal of Biological Control, 2012, 28(4): 552-559. (in Chinese)

[10]Lai Y, Xu B, He L, Lin M, Cao L , Mou S L, Wu Y, He S L. Differential gene expression in pepper (Capsicum annuum) exposed to UV-B. Indian Journal of Experimental Biology, 2011, 49(6): 429-437.

[11]Bachem C W B, Van der Hoeven R S, De Bruijn S M, Vreugdenhil D, Zabeau M, Visser R G F. Visualization of differential gene expression using a novel method of RNA finger printing based on AFLP: analysis of gene expression during potato tuber development. The Plant Journal, 1996, 9(5): 745-753.

[12]Bassam B J, Gresshoff P M. Silver staining DNA in polyacrylamide gels. Nature Protocols, 2007, 2(11): 2649-2654.

[13]萨姆布鲁克, 拉塞尔. 分子克隆实验指南. 3版. 北京: 科学出版社, 2002: 426-429.

Sambrook J, Russell D W. Molecular Cloning: a Laboratory Manual. 3rd ed. Beijing: China Science Publishing, 2002: 426-429. (in Chinese)

[14]Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Research, 1999, 9(9): 868-877.

[15]Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson SA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones JD, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S, Schueller C, Chalwatzis N. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 1998, 391(6666): 485-488.

[16]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 2001, 25(4): 402-408.

[17]陈银华, 韩淑梅, 沙爱华, 朱红林, 范吉星, 谢俊, 符秀梅, 李小 靖. cDNA-AFLP法筛选红树植物盐应答基因. 中国农业科学, 2008, 41(12): 4257-4263.

Chen Y H, Han S M, Sha A H, Zhu H L, Fan J X, Xie J, Fu X M, Li X J. Differential analysis of salt response genes by cDNA-AFLP in Mangrove. Scientia Agricultura Sinica, 2008, 41(12): 4257-4263. (in Chinese)

[18]张岗, 董艳玲, 夏宁, 张毅, 王晓杰, 屈志鹏, 李依民, 黄丽丽, 康振生. 利用cDNA-AFLP技术分析小麦成株抗条锈性差异基因表达特征. 作物学报, 2010, 36(3): 401-409.

Zhang G, Dong Y L, Xia N, Zhang Y, Wang X J, Qu Z P, Li Y M, Huang L L, Kang Z S. cDNA-AFLP analysis reveals differential gene expression in wheat adult-plant resistance to stripe rust. Acta Agronomica Sinica, 2010, 36(3): 401-409. (in Chinese)

[19]Ryu C M, Murphy J F, Mysore K S, Kloepper J W. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. The Plant Journal, 2004, 39(3): 381-392.

[20]Park K S, Kloepper J W. Activation of PR-1 a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biological Control, 2000, 18(1): 2-9.

[21]Ryu C M, Hu C H, Reddy M S, Kloepper J W. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytologist, 2003, 160(2): 413-420.

[22]Maldonado A M, Doerner P, Dixon R A, Lamb C J, Cameron R K. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 2002, 419(6905): 399-403.

[23]李迪, 唐振鑫, 刘海静, 曾庆银, 杨海灵. 毛白杨两个Phi类GST基因的克隆及生化特性. 植物学报, 2012, 47(3): 248-256.

Li D, Tang Z X, Liu H J, Zeng Q Y, Yang H L. Molecular characterization of two phi glutathiones-transferases from Populus tomentosa. Chinese Bulletin of Botany, 2012, 47(3): 248-256. (in Chinese)

[24]Verhagen B W, Glazebrook J, Zhu T, Chang H S, Van Loon L C, Pieterse C M. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 2004, 17(8): 895-908.

[25]Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 2007, 10(4): 366-371.

[26]彭喜旭, 胡耀军, 唐新科, 周平兰, 邓小波, 王海华. 茉莉酸和真菌病原诱导的水稻WRKY30转录因子基因的分离及表达特征. 中国农业科学, 2011, 44(12): 2454-2461.

Peng X X, Hu Y J, Tang X K, Zhou P L, Deng X B, Wang H H. Isolation and expression profiles of rice WRKY30 induced by jasmonic acid application and fungal pathogen infection. Scientia Agricultura Sinica, 2011, 44(12): 2454-2461. (in Chinese)

[27]刘蕾, 杜海, 唐晓凤, 吴燕民, 黄玉碧, 唐益雄. MYB转录因子在植物抗逆胁迫中的作用及其分子机理. 遗传, 2008, 30(10): 1265-1271.

Liu L, Du H, Tang X F, Wu Y M, Huang Y B, Tang Y X. The roles of MYB transcription factors on plant defense responses and its molecular mechanism. Hereditas, 2008, 30(10): 1265-1271. (in Chinese)

[28]乔孟, 于延冲, 向凤宁. 拟南芥R2R3-MYB类转录因子在环境胁迫中的作用. 生命科学, 2009, 21(1): 145-150.

Qiao M, Yu Y C, Xiang F N. The roles of the Arabidopsis R2R3-MYB transcription factors in the stress responses. Chinese Bulletin of Life Sciences, 2009, 21(1): 145-150. (in Chinese)

[29]Kim S H, Hong J K, Lee S C, Sohn K H, Jung H W, Hwang B K. CAZFPI, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum. Plant Molecular Biology, 2004, 55(6): 883-904.

[30]宋冰, 洪洋, 王丕武, 王贺, 付永平, 丁孝营. 植物C2H2型锌指蛋白的研究进展. 基因组学与应用生物学, 2010, 29(6): 1133-1141.

Song B, Hong Y, Wang P W, Wang H, Fu Y P, Ding X Y. Advances on plant C2H2-type zinc finger protein. Genomics and Applied Biology, 2010, 29(6): 1133-1141. (in Chinese)

[31]Lohar D P, Sharopova N, Endre G, Penuela S, Samac D, Town C, Silverstein K A, VandenBosch K A. Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiology, 2006, 140(1): 221-234.

[32]Li Y, Jones L, McQueen-Mason S. Expansins and cell growth. Current Opinion in Plant Biology, 2003, 6(6): 603-610.

[33]孙涛, 柴团耀, 刘戈宇, 张玉秀. 植物GH3基因家族研究进展. 生物工程学报, 2008, 24(11): 1860-1866.

Sun T, Chai T Y, Liu G Y, Zhang Y X. Progress in the plant GH3 gene family. Chinese Journal of Biotechnology, 2008, 24(11): 1860-1866. (in Chinese)
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[4] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[5] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[6] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[7] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[8] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[9] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[10] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[11] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[12] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[13] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[14] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[15] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!